
TEMPORAL ANALYSIS OF COMPLEX TIME-DEPENDENT SYSTEMS:
AN APPROACH BASED ON TIME PETRI NETS, ACTORDEVS AND HLA

Franco Cicirelli(a), Angelo Furfaro(b), Libero Nigro(c), Francesco Pupo(d)

(a) (b) (c) (d) Laboratorio di Ingegneria del Software
(www.lis.deis.unical.it)

Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria
87036 Rende (CS) – Italy

(a)f.cicirelli@deis.unical.it, (b)a.furfaro@deis.unical.it, (c) l.nigro@unical.it, (d)f.pupo@unical.it

ABSTRACT
The design of time-dependent systems is challenging
because it must fulfil both functional and temporal
requirements. A properly abstracted model of one such
a system, with temporal aspects only, is often derived
and analyzed in order to evaluate the temporal
behaviour of the system. Temporal analysis can be
based on simulation or (hopefully) on exhaustive state
space exploration. The latter techniques, though, are
difficult to practice for large system models. In the work
described in this paper, Time Petri Nets (TPNs) are
preferred to formalize a time-dependent system because
they facilitate the expression of concurrency,
distribution, synchronization, mutual exclusion etc.
concerns. An approach is proposed where a TPN model
is mapped on ActorDEVS, a minimal and efficient Java
framework supporting parallel or interleaved DEVS
model execution. Complex TPN models can be
analyzed using distributed simulation of ActorDEVS
over HLA. The approach is demonstrated by means of a
real-time realistic example.

Keywords: DEVS modelling and simulation, time Petri
nets, actors, HLA

1. INTRODUCTION
The design of systems with timing constraints (e.g.
embedded real-time systems, communication protocols,
flexible manufacturing systems etc.) is difficult because
it must fulfil both functional and (most importantly)
temporal requirements. A properly abstracted model of
one such a system, where only temporal aspects are
explicitly modelled, is often derived and analyzed in
order to evaluate the temporal behaviour of the system.

Temporal analysis can be based on simulation or
(hopefully) on exhaustive state space exploration using
e.g. model checking techniques (Cicirelli et al., 2007c).
The latter techniques, though, are difficult to practice in
the case of large system models which can have a large
or even unbounded state graph.

This paper proposes an approach to modelling and
temporal analysis of embedded control systems (Furfaro
and Nigro, 2007) which is based on Time Petri Nets
(TPNs) (Merlin and Farber, 1976; Cicirelli et al.,

2007c) and simulation. The approach is novel and maps
preliminarily a TPN model on to ActorDEVS (Cicirelli
et al., 2008), a lean and efficient agent-based
framework in Java supporting Parallel DEVS (Zeigler et
al., 2000). A distinguishing feature of ActorDEVS with
respect to standard DEVS tools like DEVSJAVA
(Zeigler and Sarjoughian, 2003) concerns the possibility
of customizing the simulation engine in order to cope
with different execution semantics. As a significant
example, an interleaved parallel simulation engine was
developed which is able to manage at runtime conflicts
existing among TPN transitions (Cicirelli et al., 2007b).
The realization is beyond the scope of standard DEVS
because the built-in semantics of maximal parallelism
assumed by conventional simulation infrastructure
(Zeigler and Sarjoughian, 2003), implies that all
components which can undergo a simultaneous state
transition at a given time, must do so and then cannot
take care of conflicting situations.

Application of the proposed approach proceeds as
follows. First a TPN model is visually designed and
modularized in the context of the TPN Designer toolbox
(Carullo et al., 2003; Cicirelli et al., 2007c). Then the
model is translated into PNML (Billington et al., 2003).
The PNML version, finally, is partitioned, deployed and
executed over a certain number of computing nodes,
using the runtime support for TPNs achieved with
ActorDEVS and the services of Theatre/HLA (Cicirelli
et al., 2008) for distributed simulation.

The paper demonstrates the use of the approach by
modelling and analysis of a realistic real-time system
related to a traffic light controller which is capable of
responding to the exceptional situation corresponding to
the arrival of an ambulance which must be handled
within required safety and timing constraints.

2. BASIC CONCEPTS OF TIME PETRI NETS
A TPN is assumed to be a tuple

),,,,,,(0
S

nh IMWIATPTPN � where

� P and T are non empty and disjoint sets
respectively of places and transitions of the
underlying Petri net (Murata, 1989)

455

� A is a set of arcs: PTTPA ����
� nhI is a set of inhibitor arcs: TPInh ��

� W associates weights to arcs: N�� nhIAW : ,
with N the set of natural numbers. Weights are
assumed strictly positive for arcs in A , 0 for
inhibitor arcs

� 0M is the initial marking: N�PM :0 in the usual
sense of Petri nets

� SI is the static firing interval function:
}){(: ���� RRTI S .

Place Pp	 is an input place for transition t if
there is an arc),(tp in A . Place p is an inhibitor place
for t if nhItp),(, i.e. there exists an inhibitor arc
connecting p to t . An inhibitor arc is graphically
represented by a dot terminated line. A place p is an
output place for t if there exists an arc),(pt in A . The
set of input and inhibitor places of t is said its preset
and denoted by t� . The set of output places constitutes
the transition postset which is denoted by �t .

SI associates with each transition t a dense firing
interval whose bounds are assumed to be specified by
non negative reals:],[)(batI S � with ba

0 , b can
be � . Bound a is said the (static) earliest firing time
(EFTs) of t , b the (static) latest firing time of t (LFTs).

Let M be a marking. Transition t is said enabled
in M , denoted by �tM [, iff

�

�

	�
��

	��� �

nh

nh

ItpifpM
ItpiftpWpM

tptM
),(0)(
),(),()(

[

As soon as a transition t is enabled, it starts firing
(server semantics). The firing end event is constrained
to occur in the time interval associated with the
transition. Let � be an instant in time when transition t
is enabled. Provided t is continuously enabled, t cannot
fire before a�� but must fire before or at b�� , unless
it is disabled by the firing of another transition. At the
time transition firing ends, tokens are removed from the
input places and new tokens are generated in to output
places as in classic Petri nets. Let

beforeM be the net
marking just before t completes its firing. Firing end of
t transforms

beforeM in
afterM , denoted by

afterbefore MtM �[, by an instantaneous and atomic
process in two phases:

(phase 1-token withdrawal)
Pp	� if tp �	 then),()()(' tpWpMpM before ��

else)()(' pMpM before� endif

(phase 2-token deposit)
Pp	� if �	 tp then),()(')(ptWpMpM after ��

else)(')(pMpM after � endif

where 'M represents the intermediate marking
generated after token withdrawal. It is worth noting that
an enabled transition 't , i.e. '[[tMtM beforebefore � , can

be disabled (its firing stopped) by the firing of t , either
in marking 'M (because of a conflict due to the sharing
of some input places with t , i.e. ����� 'tt , or in the
reached marking

afterM (because of the existence of
some inhibitor arc: nhItptp 		� �)',(:). Similarly, a
disabled transition ''t , i.e. ''[[tMtM beforebefore �� , due
to the firing of t can become enabled in 'M or in

afterM . Single server firing semantics is assumed. After
its own firing, would t be still enabled it is considered
as any new enabled transition.

3. A TRAFFIC LIGHT CONTROLLER
In order to illustrate the approach, modelling and
simulation of a Traffic Light Control system (TLC)
(Raju and Shaw, 1994) are described in the following.
In the proposed scenario, the traffic flow at an
intersection between an avenue and a street is regulated
by two traffic lights. The lights are operated by a
control device (controller) that, in normal conditions,
alternates in a periodic way the traffic flow in the two
directions. In addition, the controller is able to detect
the arrival of an ambulance and to handle this
exceptional situation by allowing the ambulance
crossing as soon as possible and in a safe way. For the
sake of simplicity, it is assumed that at most one
ambulance can be in the closeness of the intersection at
a given time.

During normal operation conditions, the sequence
green-yellow-red is alternated on the two directions
with the light held green for 45 seconds, yellow for 5
seconds and red on both directions for 1 second. The
intersection is equipped with sensors able to detect the
presence of an ambulance at three different positions
during its crossing. As soon as the ambulance arrival is
detected, a signal named “approaching” is sent to the
controller. When the ambulance reaches the nearness of
the intersection the signal “before” is issued. After the
ambulance completes the crossing the signal “after” is
generated. The controller reacts to the “approaching”
event by leading the intersection to a safe state, i.e.
bringing both lights on red.

Figure 1: TLC system model

:Controller r_ambApp

r_ambBefA

r_ambAfterA

r_ambBefS

r_ambAfterS

d_aveToYd_aveToR d_aveToG

d_strToYd_strToR d_strToG

:Ambulanced_appr

d_beforeA

d_afterA

d_beforeS

d_afterS

avenueLight:Light

r_toYr_toR r_toG

r_toYr_toR r_toG

streetLight:Light

456

When the signal “before” is received, the controller
switches to green the light on the ambulance’s arrival
direction. After the ambulance leaves the intersection
(“after” event) the controller turns the green light to red
and resumes its normal sequence.

Fig. 1 illustrates a model of the TLC system which
is made of four connected components: there are two
instances of the Light component, which respectively
correspond to the light on the avenue and that on the
street, one Ambulance component, which models the
behaviour of the sensing equipments of the intersection
and one Controller component, which implements the
above described control logic.

Each component is specified by exploiting the
module construct available in PNML (Billington et al.,
2003). Modules support the creation of several
independent instances of a given sub-net, usable in
different contexts. For example, in Fig. 1, aveLight and
streetLight are two instances of the module Light.
Module interfaces are defined by means of import and
export places. An export place (represented by gray-
shaded disc with continuous border) is a place that is
made visible outside the module; an import place
(represented by gray-shaded disc with dashed border) is
a reference to a place owned by another module
instance. Connections among module instances are
achieved, as in Fig. 1, by linking each import place to
an export place.

The behaviour of a module is modelled by a TPN
sub net. Fig. 2 details the TPN model of the module
Light. The places red, yellow and green model the
status of the traffic light. Places r_toR, r_toY, and
r_ToG are the export places of the component interface.

Figure 2: TPN model of a traffic-light.

An external component may ask to switch the light
on green, yellow or red by respectively putting a token
in the place r_toG, r_toY or r_toR. The initial marking
of this sub net, where only place red contains a single
token, models the fact that at start-up the red light is on
and the others are off.

As can be seen from the time-windows of the
transitions if Fig. 2, the handling of each request to
change the status of a light, requires 1 time unit to be
served.

Fig. 3 depicts the TPN model of the Ambulance
module, which is used to simulate the sporadic arrival
of ambulances needing to cross the intersection. This
module has an interface made of five import places,
which are used to notify the ambulance movements. It
can be easily noticed that this net is symmetrical, with
the upper part which models the crossing along the
avenue and the lower part that along the street. The
initial marking corresponds to a situation where the
ambulance chooses its next crossing direction in a non
deterministic way. This is modelled by the conflict
existing between the transitions NextS and NextA.

The ambulance approaching on the avenue (street)
is signalled by the firing of transition ApprA (ApprS)
that puts a token into the import place d_appr. Timing
specifications of these two transitions corresponds to
the minimal and maximal interval between two
successive ambulance arrival events. Transition BefA
(BefS) puts a token into the import place d_beforeA
signalling that the ambulance finds itself just before the
intersection and that it is coming from the avenue
(street). Timing constraints of this transition correspond
to the time interval that may elapse between an
approaching and a before event. Firing of transition
AfterA (AfterS) corresponds to the completion of the
ambulance crossing along the avenue (street) and results
in a token put in the import place d_afterA (d_afterS).

[0,0]

[6,8]
AfterA

[8,10]

BefA

[70,300]
ApprA

[0,0]

ApprS

AfterS

BefS

[70,300]

[8,10]

[6,8]

d_appr

d_beforeA

d_afterA

d_afterS

d_beforeS

NextA

NextS

Figure 3: TPN model of the ambulance

[1,1] [1,1]

yellow

red

r_toR

[1,1]

[1,1]

[1,1]

[1,1][1,1]

green

r_toY

r_toG

[1,1]

[1,1]

G2R

R2R

Y2R

Y2Y

G2Y

R2Y

G2G

R2G
Y2G

457

[0,0]
AambToY

r_ambAfterA

[0,0]
AambToG

r_ambBefA

[0,0]

[1,1]
ExAToY

r_ambApp

turnS

[5,5]
AtoR

aY

[45,45]
AtoY

[1,1]

AtoG

bothR

aG

sY

[0,0]
SambToY

[0,0]
SambToG

[1,1]
ExSoY

[5,5]
StoR

[45,45]
StoY

turnA

StoG

[0,0]

[1,1]

sG r_ambAfterS

r_ambBefS

d_aveToG

d_strToG

d_aveToYd_aveToR

d_strToYd_strToR

ReadyA

ReadyS

Figure 4: TPN model of the controller

The time interval associated to AfterA (AfterS)
models the time needed to the ambulance to complete
its crossing.

Fig. 4 is the TPN model for the controller which is
the most complex component of the system. Also this
net is symmetrical with the upper part interacting with
the avenue light and the lower part with the street light.
At start-up, the controller assumes that both lights are
red and this is reflected by the presence of a token in the
place bothR. The marking of places turnA and turnS
determines whether the sequence green-yellow-red must
starts respectively on the avenue or on the street. Under
a normal operation mode, if there is a token into turnA,
transition AtoG fires after 1 sec, puts one token into aG
and another one into the export place d_aveG asking the
light in the avenue to switch on green. After 45 sec,
transition AtoY fires and puts one token into aY and
another one into d_aveY, then after 5 sec transition
AtoR fires and generates one token into places bothR,
turnS, and d_aveR. Place turnS is now marked and,
after 1 sec, the sequence starts again but on the street.
This cycle continues until the approaching of an
ambulance is notified by a token arrival into the export
place r_ambAppr. The controller reaction to this event
depends on the current status of the lights. It must bring
both lights to red in a safe way in order to be ready to
handle the ambulance crossing. The best case occurs
when both light are already red and then one of the two

transitions readyS or readyT can fire and disable the
beginning of another sequence. In the case the light on
the avenue (street) is green, the presence of one token
into r_ambAppr and of one another into aG (sG)
enables the immediate transition ExAtoY (ExStoY)
whose firing has the same effect as the firing of aY
(sY), i.e. asking the avenue (street) light to switch on
yellow. After that, the sequence continues as in the
normal case until both lights become red and the start of
the next sequence is avoided as before. No special
provision has to be taken when one of the two light is
yellow. After handling the ambulance approaching, the
controller maintains both lights red until the event of a
token arrival into place r_ambBefA (r_ambBefS)
notifies that the ambulance is just before crossing the
intersection along the avenue (street). The controller
reacts switching to green the light on the avenue (street)
by firing transition AambToG (SambToG). The light is
maintained green until the ambulance completes the
crossing, event that is notified by a token into the
import place r_ambAfterA (r_ambAfterB). This token
enables the immediate transition AambToY (SambToY)
whose firing has the same effect as that of AtoY (StoY),
i.e. asking the light to switch on yellow. After 5 sec
transition AtoR (StoR) fires and regenerates one token
into place turnS (turnA). At this point, the controller
restarts its normal operation mode.

4. TLC PROPERTY ANALYSIS
The behaviour of the TLC system can be validated by
simulating its TPN model. System validation rests on
checking that a set of assertions about its logical and
temporal behaviour are satisfied at certain points during
simulation, i.e. when events of interest occurs.

An example of safety property, i.e. one that must
always be satisfied during system evolution, regards the
consistent status of the traffic lights.

In order to avoid accidents among vehicles
crossing the intersection, when on a direction the light
is green or yellow, thus allowing the traffic on this
direction, the light on the opposite direction must be
red. This property can be checked by inspecting the
marking of the two instances of the Light component
each time one of their transitions fires. When such an
event occurs, if one between avenueLight.green and
avenueLigth.yellow is marked then streetLight.red must
be marked and if one between streetLight.green and
streenLigth.yellow is marked then avenueLight must be
marked.

Another safety property concerns the status of the
intersection at the time a “before” event is received.
When such an event occurs no vehicle should be
allowed to cross the intersection, i.e. the lights should
be red on both directions. This property can be checked
by inspecting the marking of places avenueLight.red
and streetLight.red when one between transitions BefA
and BefS fires in the Ambulance component.

Assuming that it takes at least 4 sec for the
ambulance to reach the intersection from the time
instant of the before signal, it follows that there exists a

458

deadline of 3 sec for turning green the light on the
arriving direction. This accounts for the fact that a light
takes 1 sec for changing its status. This property can be
checked by recording the occurrence time of last firing
of transition BefA (BefS) and measuring the elapsed
time when the corresponding light is turned green, i.e.
when one of the transitions having avenueLight.green
(streetlight.green) in its postset fires.

The correct sequencing of the lights on each
direction can also be easily checked by listening
transition firing of Light components. A correct
behaviour requires that only transitions RtoG, GtoY,
and YtoR may fire: the firing of a transition out of this
set denotes a wrong sequence.

5. CONCEPTS OF ACTORDEVS OVER
THEATRE/HLA

A modular TPN model can be partitioned and deployed
for execution over an instance of the Theatre
architecture (Cicirelli et al., 2007a). ActorDEVS
(Cicirelli et al., 2007b-2008) supports Parallel DEVS
component development “in-the-small”. Theatre
furnishes the mechanisms required for distributed
simulation, e.g. built on top of HLA middleware
(DMSO, on-line; Kuhl et al., 2000) which provides
time management and communication services to the
theatres (federates) which compose the whole system
(federation). For each ordered pair of communicating
theatres a corresponding interaction class (Cicirelli et
al., 2007a) is introduced and used as a communication
channel.

ActorDEVS is agent-based. Actors with
asynchronous message-passing are the basic building
blocks, supporting DEVS atomic/coupled models.
Message processing is atomic and cannot be pre-
empted. In the mapping of TPN onto ActorDEVS,
transitions correspond to atomic components. Places are
topological entities which, as soon as they change their
internal markings, alert dependent transitions to check
their enabling status. The sub net assigned to a given
theatre is a flattened coupled component. Flattening
allows the use of one simulator per theatre, thus the
simulation infrastructure of standard DEVS which
associates a simulator to each atomic or coupled model
(a multi-threaded organization) is avoided. ActorDEVS
design minimizes the number of exchanged messages
during simulation and then favours high-performance
execution.

Fig. 5 is a snapshot of a typical Theatre system
over HLA. A fundamental component in a theatre is the
ControlMachine which is responsible of local message
scheduling and dispatching. Local actors are held within
the Local Actor Table (LAT). Since ActorDEVS actors
can migrate between theatres, a Network Class Loader
(NCL) is in charge to retrieving “on-the-fly” the class of
a foreign received object from a network repository and
loading it in the local JVM.

Specific control machines for ActorDEVS,
working with HLA under conservative distributed
simulation, were developed. They include Parallel-
SimulationEngine and InterleavedSimulationEngine.

ParallelSimulationEngine, detailed in (Cicirelli et
al., 2008), follows standard Parallel DEVS execution
semantics. InterleavedSimulationEngine, on the other
hand, fires one component (e.g. one transition of a TPN
sub model) at a time. This is a key for proper
management of conflicts (Cicirelli et al., 2007b), when
the firing of a transition can disable transitions which
share some input places. Other possibilities for
disabling are related to the use of inhibitor arcs (see also
next section).

ParallelSimulationEngine uses a combination of
virtual (simulation) and logical times in order to ensure
causality relationships among simultaneous events,
when concurrent and interacting components are
allocated to different physical nodes, are ultimately
fulfilled.

6. TPN MODEL PARTITIONING
The enabling of a transition depends on the marking of
the places of its preset. In this work, network message
exchanges are purposely avoided during the enabling
process. For this reason a model partitioning is assumed
where a transition and the places of its preset are
deployed on the same node (theatre). This implies that
two transitions whose presets share at least one place
(structural conflict) must also find themselves on the
same node. This fact restricts the number of ways a
model can be partitioned. By tracking this type of
dependency among the transitions of a TPN model it is
possible to determine the maximal number of partitions
that can be obtained. These basic partitions are defined
as equivalence classes induced by an equivalence
relation.

Figure 5: A Theatre federation over HLA

459

Let R be a binary relation among the transitions
of a TPN defined as � �����	� ��

2121 :),(ttTTttR ,
where � denotes the empty set. R is reflexive and
symmetrical. Let *R be the transitive closure of R . *R
is an equivalence relation and as such it naturally
induces a partitioning of T given by the quotient set

RT / . The equivalence classes induced by *R constitute
the basic partitions of the model. Transitions belonging
to the same equivalence class must be allocated on the
same node. A model where *R induces a unique
equivalence class cannot obviously be partitioned.

t2[5,5]t1
[5,5]

p1 p2 p3 p4

p5 p6

Figure 6: A conflict situation due to inhibitor arcs

The preceding concepts are sufficient to handle
TPN models without inhibitor arcs. However, when
inhibitor arcs are used, another type of dependency
among transitions must be taken into account (see also
the example in Fig. 6).

Transitions 1t and 2t of Fig. 6, would have been
deployed on two different nodes because they are part
of two distinct equivalence classes of *R . However,
between these transitions there exists a conflict situation
due to the presence of inhibitor arcs. The firing of 1t
disables 2t by putting a token into place 3p . For an
analogous reason the firing of 2t disables 1t .

To account for these type of conflicts, a coarser
equivalence relation has to be used. Let RH be a binary
relation defined as:

� �� �.),(:),(:),(212121 nhItptpRttTTttRH 		� 	�	� �

RH takes care of dependencies induced by inhibitor
arcs and the equivalence classes induced by *RH , its
reflexive-symmetrical-transitive closure, can be used to
establish basic partitions.

7. DEPLOYMENT AND SIMULATION
The TLC TPN model was partitioned according to the
techniques described in the previous section and
actually deployed as a federation of two theatres over
HLA. One theatre hosts the traffic lights and the
ambulance components, the other hosts the controller.
Listing 1 shows a fragment of PNML describing the
module for street lights.

<pnml>
 <module name="Light">
 <interface>
 <exportPlace ref="toR" id="r_toR"/>
 <exportPlace ref="toY" id="r_toY"/>
 <exportPlace ref="toG" id="r_toG"/>
 </interface>
 <!-- places -->
 <place id="toR"/>
 <place id="red">
 <initialMarking><text>1</text></initialMarking>
 </place>
 <place id="toY"/>
 <place id="yellow"/>
 …
 <!-- transitions -->
 <transition id="R2R">
 <firetime>
 <lBound>1</lBound>
 <uBound>1</uBound>
 </firetime>
 </transition>
 <transition id="R2G">
 <firetime>
 <lBound>1</lBound>
 <uBound>1</uBound>
 </firetime>
 </transition>
 ...
 <!-- arcs -->
 <arc source="toR" target="R2R">
 <weight><text>1</text></weight>
 <type direction="PT"/>
 </arc>
 <arc source="toR" target="R2G">
 <weight><text>1</text></weight>
 <type direction="PT"/>
 </arc>
 <arc source="toR" target="R2Y">
 <weight><text>1</text></weight>
 <type direction="PT"/>
 </arc>
 <arc source="red" target="R2R">
 <weight><text>1</text></weight>
 <type direction="PT"/>
 </arc>
 <arc source="R2R" target="red">
 <weight><text>1</text></weight>
 <type direction="TP"/>
 </arc>
 ...
 </module>
</pnml>

Listing 1: A portion of PNML module Light

Listing 2 illustrates the content of a PNML file
which describes how the TLC model is built by
instantiating and connecting the modules of the various
components and how it should be partitioned and
deployed in order to be simulated. Model partitioning is
achieved by exploiting the PNML page construct. Each
page contains a part of the model that constitutes a unit
of deployment. One or more pages can be deployed for
execution on a given physical node. In this example
there are two pages respectively named left and right.
The first page contains two instances of the module
Light and one instance of the module Ambulance. The
second page contains only one single instance of the
Controller. Each page also describes how the various
instances are interconnected, i.e. the bindings among
reference places and actual places.

460

<?xml version="1.0" encoding="utf-8"?>
<pnml>
 <net id="TLC_Prova" type="TPNNet">
 <toolspecific>
 <lp ip="HYDRA" id="0" port="8000"/>
 <lp ip="PERSEUS" id="1" port="8001"/>
 <singlemap lp="0" pageid="left"/>
 <singlemap lp="1" pageid="right"/>
 </toolspecific>

 <page id="left">
 <instance id="aveLight"
 ref="../../pnmls_nets/TLC/Light.xml#Light"/>
 <instance id="strLight"
 ref="../../pnmls_nets/TLC/Light.xml#Light"/>
 <instance id="ambulance"
 ref="../../pnmls_nets/TLC/Ambulance.xml#Ambulance">
 <importPlace parameter="d_appr" instance="controller"
 ref="r_appr"/>
 <importPlace parameter="d_beforeA" instance="controller"
 ref="r_beforeA"/>
 <importPlace parameter="d_beforeS" instance="controller"
 ref="r_beforeS"/>
 <importPlace parameter="d_afterA" instance="controller"
 ref="r_afterA"/>
 <importPlace parameter="d_afterS" instance="controller"
 ref="r_afterS"/>
 </instance>
 </page>

 <page id="right">
 <instance id="controller"
 ref="../../pnmls_nets/TLC/Controller.xml#Controller">
 <importPlace parameter="d_ALG" instance="aveLight"
 ref="r_toG"/>
 <importPlace parameter="d_ALY" instance="aveLight"
 ref="r_toY"/>
 <importPlace parameter="d_ALR" instance="aveLight"
 ref="r_toR"/>
 <importPlace parameter="d_SLG" instance="strLight"
 ref="r_toG"/>
 <importPlace parameter="d_SLY" instance="strLight"
 ref="r_toY"/>
 <importPlace parameter="d_SLR" instance="strLight"
 ref="r_toR"/>
 </instance>
 </page>
 </net>
</pnml>
Listing 2: PNML file for model deployment and
partitioning

The mapping between pages and physical computing
nodes is defined in the first part of Listing 2 delimited
by the tag <toolspecific>. Here, a list of <lp> tags
associates each node identifier with a pair (Internet
address, port) of the relevant physical node and then a
list of <singlemap> tags establishes the mapping
between pages and nodes.

At simulation start-up a DEVS component, named
TPNDEVSDeployer, is created on a computing node
and it is feed with Listing 2 file and with files defining
the single modules. TPNDEVSDeployer is in charge of
parsing these files and of creating an in-memory
representation of each page. After the parsing phase is

completed, TPNDEVSDeployer creates as many
instances of SubnetManager component, as there are
computing nodes. Each SubnetManager receives the
representation of the pages it has to handle and
thereafter it is migrated on the relevant node. Finally,
when a SubnetManager reaches its destination, it creates
the DEVS components corresponding to the local
transitions and instantiates the data structures
corresponding to places. In the case the postset of a
transition resides on a different node, for each place of
this postset a corresponding ReferencePlace object is
created. ReferencePlace objects are responsible of
transparently notifying the effect of a transition firing to
the SubnetManager where actual places of the postset
reside.

A transducer (statistical) object is used in the first
theatre to follow the firing of transitions of lights and
ambulance, as well as to check marking of relevant
places. The transducer has a fire() method that gets
called on each transition firing, receiving the transition
id and the current time. Simulation experiments were
carried out using a simulation time limit of 106 for each
run. Listing 3 shows a portion of the method fire()
checking TLC properties. For brevity, only the most
important properties are shown. The places object is an
hash map for retrieving a place on the local theatre from
its name.

public void fire(String id, long now) {
 Place aveR=places.get("aveLight.toR");
 Place aveY=places.get("aveLight.toY");
 Place aveG=places.get("aveLight.toG");
 Place strR=places.get("strLight.toR");
 Place strY=places.get("strLight.toY");
 Place strG=places.get("strLight.toG");
 if((strY.getMarking()>0 || strG.getMarking()>0) &&
 aveR.getMarking()==0)
 log.put("Traffic allowed on both directions!! @"+now);
 if((aveY.getMarking() > 0 || aveG.getMarking() > 0) &&
 strR.getMarking() == 0)
 log.put("Traffic allowed on both directions!! @"+now);
 if(id.equals("ambulance.BefA") || id.equals("ambulance.BefS"))

{
 if(strR.getMarking() == 0 || aveR.getMarking() == 0)
 log.put("Intersection not safe at before @"+now);
 beforeT=now;
 if(id.equals("ambulance.BefA")) beforeA = true;
 else beforeS = true;
 }
 if((id.equals("aveLight.R2G")) && beforeA) {
 beforeA = false;
 long v=now-beforeT;
 if(v>max) max=v;
 if(max>3) log.put("Avenue light should be green!!

Deadline missed @"+now);
 }
 if((id.equals("strLight.R2G")) && beforeS) {
 beforeS=false;
 long v=now-beforeT;
 if(v>max) max=v;
 if(max>3) log.put("Street light should be green!!

Deadline missed @"+now);
 }
 …
}//fire

Listing 3: A fragment of method fire() for property
checking

461

All the previously stated properties of the TLC
model were found satisfied. Therefore, from the
viewpoint of simulation, the system was found to be
temporally correct.

8. CONCLUSIONS
This paper extends previous work carried out by the
authors and concerning an achievement with
ActorDEVS of the runtime support of Time Petri Nets
(Cicirelli et al., 2007b), i.e. an application where it is
required to dynamically handle conflicting components.
The proposed approach aims at providing distributed
simulation for property analysis of large TPN models of
time-dependent systems.
 The approach proceeds according to the following
steps:

� first a TPN model is graphically designed in the
context of the TPN Designer toolbox (Carullo et
al., 2003; Cicirelli et al., 2007c)

� then a PNML version of the model is generated
where distinct sub nets are associated with distinct
PNML modules. A module interface publishes a set
of import/export reference places whose connection
is responsibility of the configuration process.
Module boundaries can be conveniently exploited
for partitioning so as to fulfil local semantics
requirements of transitions

� a partitioned PNML model is then parsed,
instantiated and deployed on a certain number of
computing nodes of the Theatre/HLA architecture,
in the presence of a conservative simulation
conflict-aware control engine.

On-going work is geared at:

� improving the PNML generation process from TPN
Designer. At the present time the generation occurs
in two steps. First TPN Designer generates an XML
version of the model (externalization). Then a
stylesheet is used for converting the achieved XML
into PNML. The goal is to extend TPN Designer in
order to produce directly the PNML

� tuning the distributed simulation infrastructure
based on HLA to Pitch pRTI 1516 (Pitch) product.

REFERENCES
Billington, J., Christensen, S., van Hee, K., Kindler, E.,

Kummer, O., Petrucci, L., Post, R., Stehno, C. and
Weber, M., 2003. The petri net markup language:
concepts, technology, and tools. Proceedings of
the 24th Int. Conf. on Application and Theory of
Petri Nets, LNCS 2679, pp. 483–505. Springer.

Carullo, L., Furfaro, A., Nigro, L. and Pupo, F., 2003.
Modelling and simulation of complex systems
using TPN DESIGNER. Simulation Modelling
Practice and Theory, 11 (7-8), 503-532.

Cicirelli, F., Furfaro, A., Giordano, A. and Nigro, L.,
2007a. An Agent Infrastructure for distributed
simulation over HLA and a case study using
unmanned aerial vehicles. Proceedings of 40th
Annual Simulation Symposium (ANSS'07), pp.
231-238. March 26 – 28, Norfolk (VA, USA).

Cicirelli, F., Furfaro, A. and Nigro, L., 2007b. Conflict
management in PDEVS: An experience in
modelling and simulation of time Petri nets.
Proceedings of Summer Computer Simulation
Conference (SCSC'07), pp. 349-356. July 15-18, S.
Diego (CA, USA).

Cicirelli, F., Furfaro, A. and Nigro, L., 2007c. Using
TPN/Designer and Uppaal for modular modelling
and analysis of time-critical systems. Int. J. of
Simulation Systems, Science & Technology, 8 (4),
Special Issue on: Frameworks and Applications in
Science and Engineering, 8-20.

Cicirelli, F., Furfaro, A. and Nigro, L., 2008. Actor-
based Simulation of PDEVS Systems over HLA.
Proceedings of 41st Annual Simulation Symposium
(ANSS'08), pp. 229-236. April 14–16, Ottawa
(Canada).

DMSO, 2008. HLA-RTI, Defense Modeling and
Simulation Office,
http://www.dmso.mil/public/transition/hla.
[accessed on April 2008]

Furfaro, A. and Nigro, L., 2007. Modelling and
schedulability analysis of real-time sequence
patterns using Time Petri Nets and Uppaal.
Proceedings of Int. Workshop on Real Time
Software (RTS'07), pp. 821-835. October 16,
Wisla (Poland).

Kuhl, F., Dahmann, J. and Weatherly, R., 2000.
Creating computer simulation systems: An
introduction to the High Level Architecture.
Prentice Hall.

Merlin, P. and Farber, D., 1976. Recoverability of
communication protocols – implications of a
theoretical study. IEEE Transactions on
Communications, 24 (9), 1036–1043.

Murata, T., 1989. Petri nets: properties, analysis and
applications. Proc. of the IEEE, 77 (4), 541-580.

Pitch pRTI 1516, Pitch Kunskapsutveckling AB,
http://www.pitch.se/prti1516/default.asp.

Raju, S.C.V., and Shaw, A.C., 1994. A prototyping
environment for specifying and checking
Communicating Real-time State Machines.
Software–Practice and Experience, 24 (2),175–
195.

Zeigler, B.P., Praehofer, H. and Kim, T.G., 2000.
Theory of modeling and simulation. 2nd edition,
New York: Academic Press.

Zeigler, B.P. and Sarjoughian, H.S., 2003. Introduction
to DEVS modelling and simulation with Java:
developing component-based simulation models.
http://www.acims.arizona.edu. [accessed on April
2008]

462

