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ABSTRACT 
The design of time-dependent systems is challenging 
because it must fulfil both functional and temporal 
requirements. A properly abstracted model of one such 
a system, with temporal aspects only, is often derived 
and analyzed in order to evaluate the temporal 
behaviour of the system. Temporal analysis can be 
based on simulation or (hopefully) on exhaustive state 
space exploration. The latter techniques, though, are 
difficult to practice for large system models. In the work 
described in this paper, Time Petri Nets (TPNs) are 
preferred to formalize a time-dependent system because 
they facilitate the expression of concurrency, 
distribution, synchronization, mutual exclusion etc. 
concerns. An approach is proposed where a TPN model 
is mapped on ActorDEVS, a minimal and efficient Java 
framework supporting parallel or interleaved DEVS 
model execution. Complex TPN models can be 
analyzed using distributed simulation of ActorDEVS 
over HLA. The approach is demonstrated by means of a 
real-time realistic example. 

Keywords: DEVS modelling and simulation, time Petri 
nets, actors, HLA 

1. INTRODUCTION
The design of systems with timing constraints (e.g. 
embedded real-time systems, communication protocols, 
flexible manufacturing systems etc.) is difficult because 
it must fulfil both functional and (most importantly) 
temporal requirements. A properly abstracted model of 
one such a system, where only temporal aspects are 
explicitly modelled, is often derived and analyzed in 
order to evaluate the temporal behaviour of the system. 

Temporal analysis can be based on simulation or 
(hopefully) on exhaustive state space exploration using 
e.g. model checking techniques (Cicirelli et al., 2007c). 
The latter techniques, though, are difficult to practice in 
the case of large system models which can have a large 
or even unbounded state graph. 

This paper proposes an approach to modelling and 
temporal analysis of embedded control systems (Furfaro 
and Nigro, 2007) which is based on Time Petri Nets 
(TPNs) (Merlin and Farber, 1976; Cicirelli et al.,

2007c) and simulation. The approach is novel and maps 
preliminarily a TPN model on to ActorDEVS (Cicirelli 
et al., 2008), a lean and efficient agent-based 
framework in Java supporting Parallel DEVS (Zeigler et
al., 2000). A distinguishing feature of ActorDEVS with 
respect to standard DEVS tools like DEVSJAVA 
(Zeigler and Sarjoughian, 2003) concerns the possibility 
of customizing the simulation engine in order to cope 
with different execution semantics. As a significant 
example, an interleaved parallel simulation engine was 
developed which is able to manage at runtime conflicts 
existing among TPN transitions (Cicirelli et al., 2007b). 
The realization is beyond the scope of standard DEVS 
because the built-in semantics of maximal parallelism 
assumed by conventional simulation infrastructure 
(Zeigler and Sarjoughian, 2003), implies that all 
components which can undergo a simultaneous state 
transition at a given time, must do so and then cannot 
take care of conflicting situations. 

Application of the proposed approach proceeds as 
follows. First a TPN model is visually designed and 
modularized in the context of the TPN Designer toolbox 
(Carullo et al., 2003; Cicirelli et al., 2007c). Then the 
model is translated into PNML (Billington et al., 2003). 
The PNML version, finally, is partitioned, deployed and 
executed over a certain number of computing nodes, 
using the runtime support for TPNs achieved with 
ActorDEVS and the services of Theatre/HLA (Cicirelli 
et al., 2008) for distributed simulation. 

The paper demonstrates the use of the approach by 
modelling and analysis of a realistic real-time system 
related to a traffic light controller which is capable of 
responding to the exceptional situation corresponding to 
the arrival of an ambulance which must be handled 
within required safety and timing constraints. 

2. BASIC CONCEPTS OF TIME PETRI NETS 
A TPN is assumed to be a tuple 

),,,,,,( 0
S

nh IMWIATPTPN �  where  

� P and T are non empty and disjoint sets 
respectively of places and transitions of the 
underlying Petri net (Murata, 1989) 
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� A  is a set of arcs: PTTPA ����
� nhI  is a set of inhibitor arcs: TPInh ��

� W associates weights to arcs: N�� nhIAW : ,
with N  the set of natural numbers. Weights are 
assumed strictly positive for arcs in A , 0 for 
inhibitor arcs 

� 0M is the initial marking: N�PM :0 in the usual 
sense of Petri nets 

� SI is the static firing interval function: 
}){(: ���� RRTI S .

Place Pp	  is an input place for transition t  if 
there is an arc ),( tp  in A . Place p  is an inhibitor place
for t  if nhItp 	),( , i.e. there exists an inhibitor arc
connecting p  to t . An inhibitor arc is graphically 
represented by a dot terminated line. A place p  is an 
output place for t  if there exists an arc ),( pt  in A . The 
set of input and inhibitor places of t  is said its preset
and denoted by t� . The set of output places constitutes 
the transition postset which is denoted by �t .

SI  associates with each transition t  a dense firing 
interval whose bounds are assumed to be specified by 
non negative reals: ],[)( batI S �  with ba 

0 , b  can 
be � . Bound a  is said the (static) earliest firing time
(EFTs) of t , b  the (static) latest firing time of t  (LFTs).  

Let M  be a marking. Transition t  is said enabled 
in M , denoted by �tM [ , iff 

�


�

	�
��

	��� �

nh

nh

ItpifpM
ItpiftpWpM

tptM
),(0)(
),(),()(

[

As soon as a transition t  is enabled, it starts firing 
(server semantics). The firing end event is constrained 
to occur in the time interval associated with the 
transition. Let �  be an instant in time when transition t
is enabled. Provided t  is continuously enabled, t cannot 
fire before a��  but must fire before or at b�� , unless 
it is disabled by the firing of another transition. At the 
time transition firing ends, tokens are removed from the 
input places and new tokens are generated in to output 
places as in classic Petri nets. Let 

beforeM  be the net 
marking just before t completes its firing. Firing end of 
t transforms 

beforeM in 
afterM , denoted by 

afterbefore MtM �[ , by an instantaneous and atomic 
process in two phases: 

(phase 1-token withdrawal) 
Pp	� if tp �	 then ),()()(' tpWpMpM before ��

else )()(' pMpM before� endif

(phase 2-token deposit)  
Pp	� if �	 tp then ),()(')( ptWpMpM after ��

else )(')( pMpM after � endif

where 'M  represents the intermediate marking 
generated after token withdrawal. It is worth noting that 
an enabled transition 't , i.e. '[[ tMtM beforebefore � , can 

be disabled (its firing stopped) by the firing of t , either 
in marking 'M  (because of a conflict due to the sharing 
of some input places with t , i.e. ����� 'tt , or in the 
reached marking 

afterM  (because of the existence of 
some inhibitor arc: nhItptp 		� � )',(: ). Similarly, a 
disabled transition ''t , i.e. ''[[ tMtM beforebefore �� , due
to the firing of t  can become enabled in 'M  or in 

afterM . Single server firing semantics is assumed. After 
its own firing, would t be still enabled it is considered 
as any new enabled transition. 

3. A TRAFFIC LIGHT CONTROLLER 
In order to illustrate the approach, modelling and 
simulation of a Traffic Light Control system (TLC) 
(Raju and Shaw, 1994) are described in the following. 
In the proposed scenario, the traffic flow at an 
intersection between an avenue and a street is regulated 
by two traffic lights. The lights are operated by a 
control device (controller) that, in normal conditions, 
alternates in a periodic way the traffic flow in the two 
directions. In addition, the controller is able to detect 
the arrival of an ambulance and to handle this 
exceptional situation by allowing the ambulance 
crossing as soon as possible and in a safe way. For the 
sake of simplicity, it is assumed that at most one 
ambulance can be in the closeness of the intersection at 
a given time. 

During normal operation conditions, the sequence 
green-yellow-red is alternated on the two directions 
with the light held green for 45 seconds, yellow for 5 
seconds and red on both directions for 1 second. The 
intersection is equipped with sensors able to detect the 
presence of an ambulance at three different positions 
during its crossing. As soon as the ambulance arrival is 
detected, a signal named “approaching” is sent to the 
controller. When the ambulance reaches the nearness of 
the intersection the signal “before” is issued. After the 
ambulance completes the crossing the signal “after” is 
generated. The controller reacts to the “approaching” 
event by leading the intersection to a safe state, i.e. 
bringing both lights on red.  

Figure 1: TLC system model 
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When the signal “before” is received, the controller 
switches to green the light on the ambulance’s arrival 
direction. After the ambulance leaves the intersection 
(“after” event) the controller turns the green light to red 
and resumes its normal sequence. 

Fig. 1 illustrates a model of the TLC system which 
is made of four connected components: there are two 
instances of the Light component, which respectively 
correspond to the light on the avenue and that on the 
street, one Ambulance component, which models the 
behaviour of the sensing equipments of the intersection 
and one Controller component, which implements the 
above described control logic. 

Each component is specified by exploiting the 
module construct available in PNML (Billington et al., 
2003). Modules support the creation of several 
independent instances of a given sub-net, usable in 
different contexts. For example, in Fig. 1, aveLight and 
streetLight are two instances of the module Light. 
Module interfaces are defined by means of import and 
export places. An export place (represented by gray-
shaded disc with continuous border) is a place that is 
made visible outside the module; an import place 
(represented by gray-shaded disc with dashed border) is 
a reference to a place owned by another module 
instance. Connections among module instances are 
achieved, as in Fig. 1, by linking each import place to 
an export place. 

The behaviour of a module is modelled by a TPN 
sub net. Fig. 2 details the TPN model of the module 
Light. The places red, yellow and green model the 
status of the traffic light. Places r_toR, r_toY, and 
r_ToG are the export places of the component interface. 

Figure 2: TPN model of a traffic-light. 

An external component may ask to switch the light 
on green, yellow or red by respectively putting a token 
in the place r_toG, r_toY or r_toR. The initial marking 
of this sub net, where only place red contains a single 
token, models the fact that at start-up the red light is on 
and the others are off. 

As can be seen from the time-windows of the 
transitions if Fig. 2, the handling of each request to 
change the status of a light, requires 1 time unit to be 
served.  

Fig. 3 depicts the TPN model of the Ambulance 
module, which is used to simulate the sporadic arrival 
of ambulances needing to cross the intersection. This 
module has an interface made of five import places, 
which are used to notify the ambulance movements. It 
can be easily noticed that this net is symmetrical, with 
the upper part which models the crossing along the 
avenue and the lower part that along the street. The 
initial marking corresponds to a situation where the 
ambulance chooses its next crossing direction in a non 
deterministic way. This is modelled by the conflict 
existing between the transitions NextS and NextA.  

The ambulance approaching on the avenue (street) 
is signalled by the firing of transition ApprA (ApprS) 
that puts a token into the import place d_appr. Timing 
specifications of these two transitions corresponds to 
the minimal and maximal interval between two 
successive ambulance arrival events. Transition BefA 
(BefS) puts a token into the import place d_beforeA 
signalling that the ambulance finds itself just before the 
intersection and that it is coming from the avenue 
(street). Timing constraints of this transition correspond 
to the time interval that may elapse between an 
approaching and a before event. Firing of transition 
AfterA (AfterS) corresponds to the completion of the 
ambulance crossing along the avenue (street) and results 
in a token put in the import place d_afterA (d_afterS). 
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Figure 3: TPN model of the ambulance 
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Figure 4: TPN model of the controller 

The time interval associated to AfterA (AfterS) 
models the time needed to the ambulance to complete 
its crossing. 

Fig. 4 is the TPN model for the controller which is 
the most complex component of the system. Also this 
net is symmetrical with the upper part interacting with 
the avenue light and the lower part with the street light. 
At start-up, the controller assumes that both lights are 
red and this is reflected by the presence of a token in the 
place bothR. The marking of places turnA and turnS 
determines whether the sequence green-yellow-red must 
starts respectively on the avenue or on the street. Under 
a normal operation mode, if there is a token into turnA, 
transition AtoG fires after 1 sec, puts one token into aG 
and another one into the export place d_aveG asking the 
light in the avenue to switch on green. After 45 sec, 
transition AtoY fires and puts one token into aY and 
another one into d_aveY, then after 5 sec transition 
AtoR fires and generates one token into places bothR, 
turnS, and d_aveR. Place turnS is now marked and, 
after 1 sec, the sequence starts again but on the street. 
This cycle continues until the approaching of an 
ambulance is notified by a token arrival into the export 
place r_ambAppr. The controller reaction to this event 
depends on the current status of the lights. It must bring 
both lights to red in a safe way in order to be ready to 
handle the ambulance crossing. The best case occurs 
when both light are already red and then one of the two 

transitions readyS or readyT can fire and disable the 
beginning of another sequence. In the case the light on 
the avenue (street) is green, the presence of one token 
into r_ambAppr and of one another into aG (sG) 
enables the immediate transition ExAtoY (ExStoY) 
whose firing has the same effect as the firing of aY 
(sY), i.e. asking the avenue (street) light to switch on 
yellow. After that, the sequence continues as in the 
normal case until both lights become red and the start of 
the next sequence is avoided as before. No special 
provision has to be taken when one of the two light is 
yellow. After handling the ambulance approaching, the 
controller maintains both lights red until the event of a 
token arrival into place r_ambBefA (r_ambBefS) 
notifies that the ambulance is just before crossing the 
intersection along the avenue (street). The controller 
reacts switching to green the light on the avenue (street) 
by firing transition AambToG (SambToG). The light is 
maintained green until the ambulance completes the 
crossing, event that is notified by a token into the 
import place r_ambAfterA (r_ambAfterB). This token 
enables the immediate transition AambToY (SambToY) 
whose firing has the same effect as that of AtoY (StoY), 
i.e. asking the light to switch on yellow. After 5 sec 
transition AtoR (StoR) fires and regenerates one token 
into place turnS (turnA). At this point, the controller 
restarts its normal operation mode. 

4. TLC PROPERTY ANALYSIS 
The behaviour of the TLC system can be validated by 
simulating its TPN model. System validation rests on 
checking that a set of assertions about its logical and 
temporal behaviour are satisfied at certain points during 
simulation, i.e. when events of interest occurs.  

An example of safety property, i.e. one that must 
always be satisfied during system evolution, regards the 
consistent status of the traffic lights. 

In order to avoid accidents among vehicles 
crossing the intersection, when on a direction the light 
is green or yellow, thus allowing the traffic on this 
direction, the light on the opposite direction must be 
red. This property can be checked by inspecting the 
marking of the two instances of the Light component 
each time one of their transitions fires. When such an 
event occurs, if one between avenueLight.green and 
avenueLigth.yellow is marked then streetLight.red must 
be marked and if one between streetLight.green and 
streenLigth.yellow is marked then avenueLight must be 
marked. 

Another safety property concerns the status of the 
intersection at the time a “before” event is received. 
When such an event occurs no vehicle should be 
allowed to cross the intersection, i.e. the lights should 
be red on both directions. This property can be checked 
by inspecting the marking of places avenueLight.red 
and streetLight.red when one between transitions BefA 
and BefS fires in the Ambulance component.  

Assuming that it takes at least 4 sec for the 
ambulance to reach the intersection from the time 
instant of the before signal, it follows that there exists a 
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deadline of 3 sec for turning green the light on the 
arriving direction. This accounts for the fact that a light 
takes 1 sec for changing its status. This property can be 
checked by recording the occurrence time of last firing 
of transition BefA (BefS) and measuring the elapsed 
time when the corresponding light is turned green, i.e. 
when one of the transitions having avenueLight.green 
(streetlight.green) in its postset fires. 

The correct sequencing of the lights on each 
direction can also be easily checked by listening 
transition firing of Light components. A correct 
behaviour requires that only transitions RtoG, GtoY, 
and YtoR may fire: the firing of a transition out of this 
set denotes a wrong sequence.  

5. CONCEPTS OF ACTORDEVS OVER 
THEATRE/HLA

A modular TPN model can be partitioned and deployed 
for execution over an instance of the Theatre 
architecture (Cicirelli et al., 2007a). ActorDEVS 
(Cicirelli et al., 2007b-2008) supports Parallel DEVS 
component development “in-the-small”. Theatre 
furnishes the mechanisms required for distributed 
simulation, e.g. built on top of HLA middleware 
(DMSO, on-line; Kuhl et al., 2000)  which provides 
time management and communication services to the 
theatres (federates) which compose the whole system 
(federation). For each ordered pair of communicating 
theatres a corresponding interaction class (Cicirelli et
al., 2007a) is introduced and used as a communication 
channel.

ActorDEVS is agent-based. Actors with 
asynchronous message-passing are the basic building 
blocks, supporting DEVS atomic/coupled models. 
Message processing is atomic and cannot be pre-
empted. In the mapping of TPN onto ActorDEVS, 
transitions correspond to atomic components. Places are 
topological entities which, as soon as they change their 
internal markings, alert dependent transitions to check 
their enabling status. The sub net assigned to a given 
theatre is a flattened coupled component. Flattening 
allows the use of one simulator per theatre, thus the 
simulation infrastructure of standard DEVS which 
associates a simulator to each atomic or coupled model 
(a multi-threaded organization) is avoided. ActorDEVS 
design minimizes the number of exchanged messages 
during simulation and then favours high-performance 
execution.

Fig. 5 is a snapshot of a typical Theatre system 
over HLA. A fundamental component in a theatre is the 
ControlMachine which is responsible of local message 
scheduling and dispatching. Local actors are held within 
the Local Actor Table (LAT). Since ActorDEVS actors 
can migrate between theatres, a Network Class Loader 
(NCL) is in charge to retrieving “on-the-fly” the class of 
a foreign received object from a network repository and 
loading it in the local JVM.  

Specific control machines for ActorDEVS, 
working with HLA under conservative distributed 
simulation, were developed. They include Parallel-
SimulationEngine and InterleavedSimulationEngine. 

ParallelSimulationEngine, detailed in (Cicirelli et
al., 2008), follows standard Parallel DEVS execution 
semantics. InterleavedSimulationEngine, on the other 
hand, fires one component (e.g. one transition of a TPN 
sub model) at a time. This is a key for proper 
management of conflicts (Cicirelli et al., 2007b), when 
the firing of a transition can disable transitions which 
share some input places. Other possibilities for 
disabling are related to the use of inhibitor arcs (see also 
next section).  

ParallelSimulationEngine uses a combination of 
virtual (simulation) and logical times in order to ensure 
causality relationships among simultaneous events, 
when concurrent and interacting components are 
allocated to different physical nodes, are ultimately 
fulfilled. 

6. TPN MODEL PARTITIONING 
The enabling of a transition depends on the marking of 
the places of its preset. In this work, network message 
exchanges are purposely avoided during the enabling 
process. For this reason a model partitioning is assumed 
where a transition and the places of its preset are 
deployed on the same node (theatre). This implies that 
two transitions whose presets share at least one place 
(structural conflict) must also find themselves on the 
same node. This fact restricts the number of ways a 
model can be partitioned. By tracking this type of 
dependency among the transitions of a TPN model it is 
possible to determine the maximal number of partitions 
that can be obtained. These basic partitions are defined 
as equivalence classes induced by an equivalence 
relation. 

Figure 5: A Theatre federation over HLA
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Let R  be a binary relation among the transitions 
of a TPN defined as � �����	� ��

2121 :),( ttTTttR ,
where �  denotes the empty set. R  is reflexive and 
symmetrical. Let *R  be the transitive closure of R . *R
is an equivalence relation and as such it naturally 
induces a partitioning of T  given by the quotient set 

RT / . The equivalence classes induced by *R  constitute 
the basic partitions of the model. Transitions belonging 
to the same equivalence class must be allocated on the 
same node. A model where *R  induces a unique 
equivalence class cannot obviously be partitioned. 

t2[5,5]t1
[5,5]

p1 p2 p3 p4

p5 p6

Figure 6: A conflict situation due to inhibitor arcs 

The preceding concepts are sufficient to handle 
TPN models without inhibitor arcs. However, when 
inhibitor arcs are used, another type of dependency 
among transitions must be taken into account (see also 
the example in Fig. 6). 

Transitions 1t  and 2t  of Fig. 6, would have been 
deployed on two different nodes because they are part 
of two distinct equivalence classes of *R . However, 
between these transitions there exists a conflict situation 
due to the presence of inhibitor arcs. The firing of 1t
disables 2t  by putting a token into place 3p . For an 
analogous reason the firing of 2t  disables 1t .

To account for these type of conflicts, a coarser 
equivalence relation has to be used. Let RH  be a binary 
relation defined as: 

� �� �.),(:),(:),( 212121 nhItptpRttTTttRH 		� 	�	� �

RH  takes care of dependencies induced by inhibitor 
arcs and the equivalence classes induced by *RH , its 
reflexive-symmetrical-transitive closure, can be used to 
establish basic partitions. 

7. DEPLOYMENT AND SIMULATION 
The TLC TPN model was partitioned according to the 
techniques described in the previous section and 
actually deployed as a federation of two theatres over 
HLA. One theatre hosts the traffic lights and the 
ambulance components, the other hosts the controller. 
Listing 1 shows a fragment of PNML describing the 
module for street lights. 

<pnml>
  <module name="Light"> 
    <interface> 
      <exportPlace ref="toR" id="r_toR"/> 
      <exportPlace ref="toY" id="r_toY"/> 
      <exportPlace ref="toG" id="r_toG"/> 
    </interface> 
    <!-- places -->  
    <place id="toR"/> 
    <place id="red"> 
      <initialMarking><text>1</text></initialMarking> 
    </place> 
    <place id="toY"/> 
    <place id="yellow"/> 
   … 
    <!-- transitions --> 
    <transition id="R2R"> 
      <firetime> 
        <lBound>1</lBound>  
        <uBound>1</uBound> 
      </firetime> 
    </transition> 
    <transition id="R2G"> 
          <firetime> 
            <lBound>1</lBound>  
            <uBound>1</uBound> 
          </firetime> 
    </transition> 
    ... 
   <!-- arcs --> 
    <arc source="toR" target="R2R"> 
      <weight><text>1</text></weight> 
      <type direction="PT"/> 
    </arc> 
    <arc source="toR" target="R2G"> 
       <weight><text>1</text></weight> 
       <type direction="PT"/> 
    </arc> 
    <arc source="toR" target="R2Y"> 
       <weight><text>1</text></weight> 
        <type direction="PT"/> 
    </arc> 
    <arc source="red" target="R2R"> 
        <weight><text>1</text></weight> 
        <type direction="PT"/> 
    </arc> 
    <arc source="R2R" target="red"> 
        <weight><text>1</text></weight> 
        <type direction="TP"/> 
    </arc> 
    ... 
  </module> 
</pnml> 

Listing 1: A portion of PNML module Light 

Listing 2 illustrates the content of a PNML file 
which describes how the TLC model is built by 
instantiating and connecting the modules of the various 
components and how it should be partitioned and 
deployed in order to be simulated. Model partitioning is 
achieved by exploiting the PNML page construct. Each 
page contains a part of the model that constitutes a unit 
of deployment. One or more pages can be deployed for 
execution on a given physical node. In this example 
there are two pages respectively named left and right. 
The first page contains two instances of the module 
Light and one instance of the module Ambulance. The 
second page contains only one single instance of the 
Controller. Each page also describes how the various 
instances are interconnected, i.e. the bindings among 
reference places and actual places. 
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<?xml version="1.0" encoding="utf-8"?> 
<pnml>
  <net id="TLC_Prova" type="TPNNet"> 
    <toolspecific> 
      <lp ip="HYDRA" id="0" port="8000"/> 
      <lp ip="PERSEUS" id="1" port="8001"/> 
      <singlemap lp="0" pageid="left"/> 
      <singlemap lp="1" pageid="right"/> 
    </toolspecific>    

   <page id="left"> 
     <instance id="aveLight"  
            ref="../../pnmls_nets/TLC/Light.xml#Light"/> 
     <instance id="strLight"  
            ref="../../pnmls_nets/TLC/Light.xml#Light"/> 
     <instance id="ambulance" 
            ref="../../pnmls_nets/TLC/Ambulance.xml#Ambulance"> 
       <importPlace parameter="d_appr" instance="controller"  
            ref="r_appr"/> 
       <importPlace parameter="d_beforeA" instance="controller"  
            ref="r_beforeA"/> 
       <importPlace parameter="d_beforeS" instance="controller"  
            ref="r_beforeS"/> 
       <importPlace parameter="d_afterA" instance="controller"  
            ref="r_afterA"/> 
       <importPlace parameter="d_afterS" instance="controller"  
            ref="r_afterS"/> 
     </instance> 
   </page> 

    <page id="right"> 
      <instance id="controller"  
             ref="../../pnmls_nets/TLC/Controller.xml#Controller"> 
        <importPlace parameter="d_ALG" instance="aveLight"  
             ref="r_toG"/> 
        <importPlace parameter="d_ALY" instance="aveLight"  
             ref="r_toY"/> 
        <importPlace parameter="d_ALR" instance="aveLight"  
             ref="r_toR"/> 
        <importPlace parameter="d_SLG" instance="strLight"  
             ref="r_toG"/> 
        <importPlace parameter="d_SLY" instance="strLight"  
             ref="r_toY"/> 
        <importPlace parameter="d_SLR" instance="strLight"  
             ref="r_toR"/> 
      </instance> 
    </page> 
  </net> 
</pnml> 
Listing 2: PNML file for model deployment and 
partitioning 

The mapping between pages and physical computing 
nodes is defined in the first part of Listing 2 delimited 
by the tag <toolspecific>. Here, a list of <lp> tags 
associates each node identifier with a pair (Internet 
address, port) of the relevant physical node and then a 
list of <singlemap> tags establishes the mapping 
between pages and nodes. 

At simulation start-up a DEVS component, named 
TPNDEVSDeployer, is created on a computing node 
and it is feed with Listing 2 file and with files defining 
the single modules. TPNDEVSDeployer is in charge of 
parsing these files and of creating an in-memory 
representation of each page. After the parsing phase is 

completed, TPNDEVSDeployer creates as many 
instances of SubnetManager component, as there are 
computing nodes. Each SubnetManager receives the 
representation of the pages it has to handle and 
thereafter it is migrated on the relevant node. Finally, 
when a SubnetManager reaches its destination, it creates 
the DEVS components corresponding to the local 
transitions and instantiates the data structures 
corresponding to places. In the case the postset of a 
transition resides on a different node, for each place of 
this postset a corresponding ReferencePlace object is 
created. ReferencePlace objects are responsible of 
transparently notifying the effect of a transition firing to 
the SubnetManager where actual places of the postset 
reside.

A transducer (statistical) object is used in the first 
theatre to follow the firing of transitions of lights and 
ambulance, as well as to check marking of relevant 
places. The transducer has a fire() method that gets 
called on each transition firing, receiving the transition 
id and the current time. Simulation experiments were 
carried out using a simulation time limit of 106 for each 
run. Listing 3 shows a portion of the method fire() 
checking TLC properties. For brevity, only the most 
important properties are shown. The places object is an 
hash map for retrieving a place on the local theatre from 
its name. 

public void fire(String id, long now) { 
 Place aveR=places.get("aveLight.toR"); 
 Place aveY=places.get("aveLight.toY"); 
 Place aveG=places.get("aveLight.toG"); 
 Place strR=places.get("strLight.toR"); 
 Place strY=places.get("strLight.toY"); 
 Place strG=places.get("strLight.toG"); 
 if( (strY.getMarking()>0 || strG.getMarking()>0) && 
            aveR.getMarking()==0 ) 
   log.put("Traffic allowed on both directions!! @"+now); 
 if( (aveY.getMarking() > 0 || aveG.getMarking() > 0) && 
            strR.getMarking() == 0 ) 
  log.put("Traffic allowed on both directions!! @"+now); 
 if(id.equals("ambulance.BefA") || id.equals("ambulance.BefS")) 

{
   if(strR.getMarking() == 0 || aveR.getMarking() == 0)  
    log.put("Intersection not safe at before @"+now); 
   beforeT=now; 
   if( id.equals("ambulance.BefA") ) beforeA = true; 
   else beforeS = true; 
 } 
 if( (id.equals("aveLight.R2G") ) && beforeA ) { 
   beforeA = false; 
   long v=now-beforeT; 
   if( v>max ) max=v; 
   if( max>3 ) log.put("Avenue light should be green!! 

Deadline missed @"+now); 
 } 
 if( (id.equals("strLight.R2G") ) && beforeS ) { 
   beforeS=false; 
   long v=now-beforeT; 
   if(v>max) max=v; 
   if( max>3 ) log.put("Street light should be green!! 

Deadline missed @"+now); 
 } 
 … 
}//fire

Listing 3: A fragment of method fire() for property 
checking 
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All the previously stated properties of the TLC 
model were found satisfied. Therefore, from the 
viewpoint of simulation, the system was found to be 
temporally correct. 

8. CONCLUSIONS 
This paper extends previous work carried out by the 
authors and concerning an achievement with 
ActorDEVS of the runtime support of Time Petri Nets 
(Cicirelli et al., 2007b), i.e. an application where it is 
required to dynamically handle conflicting components. 
The proposed approach aims at providing distributed 
simulation for property analysis of large TPN models of 
time-dependent systems.  
 The approach proceeds according to the following 
steps:

� first a TPN model is graphically designed in the 
context of the TPN Designer toolbox (Carullo et
al., 2003; Cicirelli et al., 2007c) 

� then a PNML version of the model is generated 
where distinct sub nets are associated with distinct 
PNML modules. A module interface publishes a set 
of import/export reference places whose connection 
is responsibility of the configuration process. 
Module boundaries can be conveniently exploited 
for partitioning so as to fulfil local semantics 
requirements of transitions 

� a partitioned PNML model is then parsed, 
instantiated and deployed on a certain number of 
computing nodes of the Theatre/HLA architecture, 
in the presence of a conservative simulation 
conflict-aware control engine. 

On-going work is geared at:  

� improving the PNML generation process from TPN 
Designer. At the present time the generation occurs 
in two steps. First TPN Designer generates an XML 
version of the model (externalization). Then a 
stylesheet is used for converting the achieved XML 
into PNML. The goal is to extend TPN Designer in 
order to produce directly the PNML 

� tuning the distributed simulation infrastructure 
based on HLA to Pitch pRTI 1516 (Pitch) product. 
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