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ABSTRACT 
The goal of the DEVS-World project is the 
development of a net-centric modelling and simulation 
(NCMS) infrastructure having the net as the computer, 
thus favouring different levels of interoperability among 
research groups operating world wide. This paper 
proposes an architecture based on web services for 
NCMS using ActorDEVS. ActorDEVS is a lean and 
efficient agent-based framework in Java supporting 
modelling of Parallel DEVS systems under both 
centralized and distributed simulation. ActorDEVS 
supports custom control engines. The paper discusses 
some architectural scenarios for wrapping ActorDEVS 
in the DEVS-World infrastructure, opening to 
interoperability with other DEVS or (possibly) non-
DEVS systems. The proposal clearly separates model 
and simulation concerns. An entire model is partitioned 
among a number of simulation nodes with web services, 
in a case, which act as the transport layer for inter-node 
message exchanges. A global coordinator with a 
minimal interface of operations governs the “in-the-
large” simulation aspects. 

Keywords: M&S using the Internet, agent-based DEVS, 
web services, interoperability 

1. INTRODUCTION
The DEVS-World project (DEVS-World 2007) aims at 
developing a world-wide standard platform for 
modelling and simulation (M&S), promoting 
collaborative research and experimentation in the 
engineering, i.e. design, evaluation, implementation, 
deployment and execution of complex, scalable, 
dynamic structure systems (Hu et al. 2005) belonging to 
diverse and significant problem domains like biology 
and bioinformatics, environment systems, traffic 
simulation etc.  

The project has its strength in the use of DEVS 
(Zeigler et al. 2000) as the unifying M&S formalism 
and an exploitation of nowadays software technologies 
and middleware such as agents (Agha 1986, 
Wooldridge 2002, Cicirelli et al. 2007a) and services 
(Papazoglou and Georgakopulos 2003, Cicirelli et al. 
2007c), which are a key for software interoperability. 
The main goal is enabling the exchange of both models 

and experiments among researchers and developers 
operating in academic or industry labs, thus favouring 
cooperation. 

In this paper the ActorDEVS (Cicirelli et al. 2006, 
Cicirelli et al. 2007b, Cicirelli et al. 2008) framework is 
put under the perspective of DEVS-World in order to 
identify possible extensions and cooperation scenarios. 
ActorDEVS (see Fig. 1) is a lean and efficient agent-
based framework in Java supporting modelling of 
Parallel DEVS systems under both centralized and 
distributed simulation. The approach clearly separates 
modelling from simulation concerns. 

Both simulation and real-time execution modes are 
supported for model continuity which rests on the 
possibility of changing the control engine and 
ultimately the time notion regulating the evolution of 
the application. The approach is control-centric, in the 
sense that it allows customizing the control machine 
(see Fig. 1) which offers basic scheduling and 
dispatching message services to actor components. 

Key factors underlying ActorDEVS are the 
adoption of actors (Agha 1986, Cicirelli et al. 2007d) as 
programming in-the-small building blocks, and of 
theatres (Cicirelli et al. 2007a) as programming in-the-
large execution loci (see Fig. 1). Adopted actors are 
thread-less reactive objects which encapsulate an 
internal data state (which include acquaintances, i.e. 
known actors which can be contacted by messages), 
have a behaviour patterned as a finite state machine, and 
communicate to one another by asynchronous message 
passing. Actors can migrate dynamically from a theatre 
to another for reconfiguration purposes. 

ActorDEVS is supported by a minimal API in 
Java. Typed input/output ports are mapped on to actor 
messages. Configuration operations correspond to 
updating receiver information in output ports, also 
during the runtime. More in general, changing actor’s 
acquaintance network, a concept which is often referred 
to as link mobility, is a natural way to achieve model 
structure dynamism (Cicirelli et al. 2007a, Cicirelli et
al. 2007d, Cicirelli et al. 2008). Good execution 
performance is ensured by having a DEVS model is 
flattened from the point of view of the simulation 
engine. 
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Figure 1: Actor/Theatre architecture for ActorDEVS 

The paper is structured as follows. Subsequent section 
introduces the DEVS-World project and its objectives 
and key features. After that, a description is provided of 
how Theatre/ActorDEVS architecture can be extended 
for supporting NCMS. Last section discusses some 
issues relevant to a pragmatic use of the resultant 
architecture. Finally, future and on-going work is 
summarized. 

2. AN OVERVIEW OF DEVS-WORLD 
Novel in the DEVS-World project is the definition of a 
development methodology for supporting world-scale 
distributed open systems of systems M&S (DEVS-
World 2007). Openness is a fundamental property 
which expands along different directions with different 
levels of integration and interoperability. 

A first level of integration is relevant to model 
interoperability. Many different implementations of 
DEVS simulators currently exist, and usually each of 
them uses a built-in modelling language often tied to a 
specific programming language like Java or C++. To 
cope with this problem, specific conversion tools 
capable of translating a DEVS model from a language 
to another can be realized. A more general solution 
would be that of adopting emerging DEVS standard 
language such as DEVSML (DEVS-World 2007). 

Another direction of integration concerns 
interoperability at architectural level. In (DEVS-World 
2007) but also in (Mittal et al. 2008) the proposed 
world-wide architecture is aimed at harmonizing 
heterogeneous models based on special-case DEVS 
tools, programming languages and engines, through the 
use of Web Services and SOAP dependent messages 
and other DEVS concepts (ports, simulators, 
coordinator etc.). Web Services are viewed as a world-
wide glue enabling interoperation through DEVS/SOA 
mechanisms, with WSDL used for web services 
interface specification. 

Besides standardization of models and simulation 
infrastructure, the definition of a standard simulation 
protocol (Xiaolin and Zeigler 2008) is mandatory. The 
protocol (see Fig. 2) describes how a DEVS model 
should be simulated and how service/simulation engines 

should coordinate each other. Such a protocol opens 
also to a scenario in which both DEVS and non-DEVS 
simulators may (possibly) participate in a simulation. 

CoreSimulatorInterface (see Fig. 2) is the common 
interface to simulators. The term “core” means 
“essential” in that as long as a simulator implements 
this interface, it can participate in a simulation driven by 
a DEVS coordinator. In the case of DEVS-simulators, 
the CoupledSimulatorInterface is considered. This 
interface extends the core interface by providing other 
functionalities e.g. for adding/removing couplings 
among DEVS models. 

CoordinatorInterface must be implemented by the 
coordinator. The coordinator is in charge of 
synchronizing the activities of the various simulators 
guiding them through the simulation control cycle. 
Basic phases of the simulation cycle are shown in  
Table 1. 

In handling simulation of hierarchical coupled 
models, a coordinator orchestrates a set of controlled 
simulators within it and, at the same time, can 
participate with peers in a coupled model above it. To 
allow such downward/upward facing interfaces, the 
CoupledCoordinatorInterface is introduced which 
extends both the CoordinatorInterface and the 
CoupledSimulatorInterface.

Figure 2: Simulation protocol in a federation of DEVS 
and non-DEVS simulators 
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Table 1: Simulation cycle phases 
Step Description 

nextTN the coordinator requests that each 
simulator sends its time of next 
event and takes the minimum of 
the returned values to obtain the 
global time of next event 

computeInputOutput each simulator applies its 
computeInputOutput method to 
produce/gather an output that 
consists of a collection of 
Contents (i.e. port/value pairs) 

sendMessages each simulator partitions its 
output into messages intended for 
recipient simulators and sends 
these messages to these recipient 
simulators. Sending a message 
implies to call the recipient’s
putContentOnSimulator for any 
target simulator 

applyDeltFunc each simulator executes its 
ApplyDeltFunc method which 
computes the combined effect of 
the received messages and 
internal scheduling on its state. A 
side effect is in producing the 
time horizon gives back at the 
nextTN 

3. WRAPPING ACTORDEVS IN DEVS-WORLD 
This section highlights a service-based approach 
extending the Theatre/ActorDEVS architecture in order 
to meet requirements of DEVS-World project. Provided 
extensions support architectural interoperability among 
heterogeneous DEVS simulators. The approach adopts 
previously described DEVS simulation protocol. At the 
moment, interoperability at modelling language level is 
not addressed. Each DEVS model is assumed to be 
implemented as a Java class complying with the 
ActorDEVS API (Cicirelli et al. 2008). 

A Coordinator is introduced in order to coordinate 
the evolution of the overall simulation and it is in 
charge of implementing the DEVS simulation cycle (see 
Table 1). A Configurator makes it possible to configure 
the whole simulation system and start execution. An 
UML class diagram of system components is reported 
in Fig. 3. 

The Theatre component and the Configurator are 
not exclusive of DEVS simulations, they are common to 
all actor-based applications. The Coordinator (see Fig. 
4), instead, is tightly related to DEVS-World 
prospective. 

A DEVSControlMachine has been purposely 
developed in order to work in pair with the coordinator 
and be compliant with the DEVS simulation protocol. 
This control machine implements a 
CoupledSimulatorInterface–like (see Fig. 2) and 
behaves as a DEVS simulator. 

With respect to the approach proposed in (Xiaolin 
and Zeigler 2008) the Coordinator is only concerned 

with the execution of the DEVS simulation cycle. In 
particular it does not manage coupling information 
among DEVS models. Such information is directly 
handled at simulator level. In addition, being in a net-
centric context, the Coordinator must wait until all 
outgoing messages, i.e. inter-simulator messages, are 
received by recipient simulators before proceeding to 
the applyDeltFunc phase (see Table 1). This is ensured 
by Chek messages (see Fig. 4) sent by simulators to the 
coordinator. Toward this, the setCoordinator method 
was added to CoreSimulator (see Fig. 3). Chek
messages are actually generated at the end of 
sendMessages phase and after external messages are 
received. 

CoupledSimulator interface (Fig. 3), which does 
not introduce further methods, extends both 
CoreSimulator and Coupled interfaces. This is to 
guarantee a clear separation of concerns among 
configuration (i.e. coupling management addressed by 
the Coupled interface) and simulation aspects 
(simulation protocol management addressed by the 
CoreSimulator interface).  

It is worthy noting, finally, that a 
DEVSControlMachine is in charge of handling the 
simulation needs of all the models allocated to the same 
theatre. In other words, each theatre has one simulator 
instead of having one simulator for every distinct 
atomic model. 
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Figure 3: Class diagram of system components 

Figure 4: Coordinator interface 

In order to support the NCMS vision, a whole 
Theatre/ActorDEVS system, which can span from a 
single atomic model to a complex coupled model, is 
made usable through Web Services. Each system 
component is made available as a Web Service by 
means of specific objects called Wrappers. Client-side 
interactions are instead mediated by means of specific 
Proxy objects. It is worthy of note that in a service 
oriented architecture the roles of client and provider are 

public interface Coordinator{ 
  void setSimulators(SimulatorInfo[] si)throws Exception; 
  void simulate(long simulationTime)throws Exception; 
  void sendMessagesEnd(Check check)throws Exception; 
} 
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not strictly defined, being possible for a same node to 
act as client or provider on the basis of the 
required/offered functionalities. 

Wrappers and Proxies are transparently used. As a 
consequence, would e.g. Java RMI be used in place of 
Web-Services based protocols, only Wrappers and 
Proxies would be accordingly changed. Fig. 5 shows the 
architecture of a resultant Theatre/ActorDEVS system. 

Figure 5: Architecture of a Theatre/ActorDEVS system 

A Code Server is shared among theatres and it is 
used as a remote Java-class repository from which 
download the actor-based application to execute, i.e. in 
this case the DEVS models to simulate. Configuring 
and starting a simulation consists of four steps. The first 
step is devoted to setting-up the Theatre nodes by 
specifying the control machine, the transport layer to 
use and the code server IP address. 

This is accomplished by exploiting the 
Configuration and Management Web Service (see the 
C&M-WS in Fig. 5). After the control machine is 
instantiated its functionality is made available as a Web 
Service which is automatically published (see the 
Simulator-WS in Fig. 5). The DEVSControlMachine
oversees message exchange with other simulators. As a 
consequence, the transport layer (see the TL-WS in  

Fig. 5) in this scenario is used only to manage inter-
theatre control messages. 

The second step consists in assigning to each 
Theatre the DEVS model(s) to simulate. A single model 
may correspond to an atomic or to a coupled DEVS 
component. The Java class name of each model requires 
to be specified along with the parameters possibly 
required by its constructor. This step is carried out by 
exploiting the C&M-WS and completes when models 
get assigned to target theatres, i.e. downloaded from the 
code server and instantiated. 

The third step consists in establishing the 
necessary bindings among coordinator and simulator 
services (i.e. acquaintance relationships). In particular, a 
CoordinatorInfo object is provided to each simulator 
and a list of all SimulatorInfo objects, relevant to 
simulators involved in the federation, is furnished to 
each simulator and to the coordinator. An info object 
contains the name of the service and the relevant service 
endpoint address which is necessary to contact and use 
it. As stated above, each simulator has to know the 
coordinator in order to communicate information about 
the state of the current sendMessages phase (see 
Table 1). 

The fourth step consists in defining couplings 
among deployed models in order to build the entire 
simulation model. This is achieved by invoking the 
method addCoupling onto simulators. Coupling 
information mainly contains a couple of names, 
identifying the two ports to be connected. The first 
name is relevant to an output port of a DEVS 
component local to the simulator. The second name is 
relevant to an input port of a DEVS component which 
can be either local to the simulator or residing on a 
remote simulator. In the latter case, the name of the 
remote simulator is provided along with coupling 
information. 

A naming policy is required to distinguish ports 
belonging to different instances of the same model. In 
particular, full name of a port is assumed to be specified 
in the form modelInstanceName.portName.

Figure 6: XML schema of the configuration files 
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At runtime, remote couplings get actualized by 
means of the so called RelayPort objects. Making a 
remote coupling implies linking an output port of a 
DEVS component to a relay port which, in turn, is 
logically connected to a remote input port. All of this 
makes the DEVS component unaware of network 
partitioning. 

All data needed during configuration steps are 
contained in an XML file whose schema is reported in 
Fig. 6. In the current prototype system implementation, 
the Settings type is used only to contain the simulation 
time info. The CodeServer and Coordinator types 
contain information required to contact the relevant 
components on the web (e.g. service name, host, port). 
Other types are self-explanatory. 

At configuration end, the Configurator may launch 
the simulation by calling the simulate method on the 
Coordinator which in turn triggers into execution the 
simulation control loop. 

4. VARIABLE STRUCTURE SYSTEM 
EXAMPLE 

The achieved implementation of WS-based 
Theatre/ActorDEVS architecture was tested by 
modelling and simulation of a variable structure system 
based on server relocation (Cicirelli et al. 2008). The 
modelled system consists of a collection (closed 
pipeline) of interconnected node components  
(see Fig. 7). 

Each node receives from its environment a stream 
of jobs, stores them in a buffer (of unbounded size) and 
ultimately processes them using a number of server 
components. A system is assumed to work with a fixed 
number of servers. Servers cannot be dynamically 
generated because they model physical computing 
resources. However, a high loaded node can ask for a 
server to its neighbours. A dispatcher component in a 
node is in charge of handling the server relocation 
issues. Main difference between the model as handled 
in (Cicirelli et al. 2008) and here, consists in the 
achievement of structure dynamism. 

In (Cicirelli et al. 2008), server components 
migrate from a node to another as mobile agents. In the 

scenario of this paper, though, servers do not migrate 
but port objects are created/destroyed dynamically in 
order to contact servers. 

Asking for a server may return a server port 
through which a dispatcher can submit a job to a server 
allocated on a different node. As a consequence, server 
relocation is achieved by changing the number of 
servers a node can contact to process its jobs. Different 
strategies of server relocation can be considered (see 
later).

Fig. 7 depicts a three node system, together with 
input/output ports and connectors. Each node can direct 
useful statistical data to an external Statistics
(transducer) component connected to the StatOut
output port. When used, the OverloadGenerator can 
inject jobs randomly to any node.  

Fig. 8 shows the internal structure of a node. Inter-
node ports serve to send/receive an ask to/from a 
neighbour for a server (ask-OUT?, askIN), to 
send/receive a server to/from a neighbour (moveIN?,
moveOUT?, moveIN), or to send/receive back a no 
longer useful server (sendBackOUT?, sendBackIN).  
Fig. 7 shows delegate connections (represented by 
using dashed lines) within a coupled node. The 
shadowed TimerToken component in Fig. 8 is required 
only by some relocation protocols. 

A high loaded node, that is a node with a pending 
job but without idle servers, asks for a server port to its 
neighbours. When the Dispatcher of a node receives a 
request for a server, it honours the request with a server 
port if at least one idle server is available. Otherwise the 
request is ignored. If no server ports are obtained, a 
node asks again for a server port after a certain time 
delay. Three particular strategies (Cicirelli et al. 2008) 
were considered about the way a node can handle 
external utilizable servers. 

On-demand strategy - A node which achieves an 
external server, views it as an own server. Therefore, 
the protocol freely distributes server ports among nodes 
on a on-demand basis. It can be anticipated that this 
strategy makes it possible for nodes to behave in a 
selfish-way, possibly leading to an unbalanced 
distribution of server use. 

Figure 7: A ring of three nodes 
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Figure 8: Internal structure of a node 

Debt strategy - A debt concept for server allocation 
is introduced. A node which receives a server port from 
a neighbour, annotates the identification of the 
furnishing node. As soon as the Dispatcher of a debtor 
node has no pending job but has at least one idle server, 
it tries to exhaust its debits by anticipating restitution of 
some server ports to its creditor nodes. Intuitively, the 
protocol attempts to avoid non uniform utilization of 
servers. 

Token passing strategy - One server port is used as 
a token which circulates upon the closed pipeline. A 
node receiving the token-server can use it if has a 
pending job but has no available local server. 
Otherwise, or after token usage, the token is forwarded 
to the next node in the ring. The strategy tries to 
anticipate a server request. A node which receives the 
token as well as server ports coming from neighbours, 
uses the token and sends back the other server ports. 

5. CONFIGURATION, DEPLOYMENT AND 
SIMULATION

Some simulation experiments concerning the server 
relocation model described in the previous section were 
carried out by using two Theatre/ActorDEVS systems 
allocated on two Win platforms. 

Another Win platform was used to host the 
Coordinator, the Code Server and the Configurator. The 
experiments were directed to study the effects of 
overloads starting from an equilibrium situation. 
Simulation parameters which, under either On-Demand 
or Debt strategy, ensure the buffers size or equivalently 
the mean delay time of jobs is definitely constant and of 
a low value are as follows. 

The job interarrival time is in the interval [2,4], the 
job size (which indicates the time needed to process the 
job) belongs to the interval [8,15]. The time delay a 
Node waits between two consecutive asks for a server 
was set to 1 time unit. The number of servers initially 
allocated to each node is 4. Starting from the 
equilibrium, the OverloadGenerator (see Fig. 7) is 
capable of injecting each generated job to a randomly 
chosen node. 

To respond to the overload, one additional server 
was introduced, whose management ultimately depends 
on the adopted strategy(ies). 

For instance, under On-demand or Debt strategies 
the extra server is initially assigned to a given node. In 
the Token passing strategy, instead, the extra server (its 
port) circulates in the pipeline ring. In this case, to avoid 
Zeno behaviours, the token which reaches the node 
where it was last used, is forced to wait one time unit 
before starting the next round. 

The job mean delay time (that is the time which 
elapses between the instant in time a job is received by 
Buffer and the subsequent time the job gets assigned to 
a server) was measured by the Statistics components. 
The investigated strategies for responding to overload 
were: Debt & Token, On-demand & Token, On-demand 
alone. 

The DEVS models relevant to Node,
JobGenerator, OverloadGenerator and Statistics were 
deployed to the Code Server. A number of Nodes,
varying from one to five, along with the relevant 
instances of JobGenerators were assigned to each 
Theatre. The OverloadGenerator and the Statistics were 
allocated on a single Theatre. The simulation time limit 
was set to tEND=105.

Different system configurations were actualized by 
specifying different configuration files. An excerpt of 
such a file is reported in Fig. 9. The configuration is 
relevant to a relocation system model made up of two 
Nodes allocated to two theatres. Only the Debt strategy 
is considered. 

Coupling information, common to all the 
configuration files, is used to build up the overall 
simulation model. In particular: 

• each JobGenerator was coupled with the relevant 
Node

• each Node was coupled with its neighbors in the 
closed pipeline 

• the OverloadGenerator was coupled with all the 
Nodes

• each Node was coupled with the Statistics.
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Figure 9: An excerpt of a configuration file 

Coupling information dictates system topology at 
configuration time. At runtime, on the basis of the 
adopted strategy, a Node may dynamically change the 
servers it actually contacts without resorting to the 
add/remove coupling mechanism. 

Simulation experiments (see Fig. 10) indicate that 
the combination of Debt & Token strategies minimizes 
the job mean delay time when compared to the other 
strategies.

Figure 10: Job mean delay time vs. number of nodes 

6. CONCLUSIONS 
A prototype version of the Theatre/ActorDEVS 
architecture based on Web Services was realized and 
tested. The implementation relies on Java technology. 
In particular, the SOAP engine Axis (Axis website) is 

used for managing WS related aspects. The following 
are some points which deserve some discussion within 
the community of DEVS-World. 

• The DEVS simulator protocol appears “too much 
synchronous” for a networked context. Many 
interactions among the simulation-protocol 
participants are required for each simulation step 
independently from the complexity of the simulated 
model. A systematic exploitation of a kind of 
“lookahead” could alleviate the problem. By 
exploiting lookahead the coordinator could give a 
granted time to each simulator allowing a more 
independent evolution of local simulation. 

• Another (obvious) issue concerns simulation 
performance achievable by the use of WSs. This is 
not only tied to the use of verbose XML for SOAP 
messaging but mainly to the management of 
network connections. Simulation experiments 
confirmed that network resources (connections) of 
operating system may be wasted considerably 
during simulation and need in general careful 
control. 

On-going work is directed at: 

• improving the Configurator component by 
providing a friendly GUI for visual system 
configuration, model composition, deployment and 
simulation control 

• replacing Axis by other Web Service infrastructure 
e.g. related to latest J2EE 

• introducing a model repository service, enabling 
model reuse and sharing 

• adopting standard formalisms like DEVSML for 
supporting DEVS modelling 

• favouring model and experiments interchange by 
developing translation tools allowing model 
transformation from a high-level implementation-
independent formulation into the terms of a specific 
DEVS setting (e.g. ActorDEVS and Java) and vice 
versa

• experimenting with Theatre/ActorDEVS 
architecture in an heterogeneous environment 
where diverse DEVS simulators have to cooperate 

• developing tools for visual modelling. 
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<?xml version="1.0" encoding="utf-8"?> 
<Configuration name="RelocationServers" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="./TheatreDEVS.xsd"> 
<theatrelist> 
 <theatre id="PERSEUS8000" host="perseus" port="8000"> 
  <controlmachine name="theatre.DEVSControlMachine"/> 
  <transportlayer name="theatre.transport.WSTransport"/> 
  <marshaller name="theatre.marshaler.ByteArrayMrshlr"/> 
 </theatre> 
 <theatre id="HYDRA8000" host="hydra" port="8000"> 
  ... 
 </theatre> 
</theatrelist> 
<codeserver url="http://orion:8989"/> 
<coordinator name="Coordinator" host="orion" port="8080"/> 
<coupledmodel> 
 <component name="Node1" theatre="PERSEUS8000"> 
  <componentClass name="relocation.Node"/> 
  <!-- number of servers --> 
  <constructorparam type="java.lang.Long" value="4"/> 
  <!-- token disabled --> 
  <constructorparam type="java.lang.Boolean" value="false"/> 
  <!-- debt enabled --> 
  <constructorparam type="java.lang.Boolean" value="true" /> 
 </component> 
 <component name="Node2" theatre="HYDRA8000"> 
  <componentClass name="relocation.Node"/> 
  ... 
 </component> 
 <component name="OverloadGenerator" theatre="PERSEUS8000"> 
  <componentClass name="relocation.OverloadGenerator" /> 
 </component> 
 ... 
 <coupling> 
  <source theatre="PERSEUS8000" port="Node1.sendBackOut2"/> 
  <dest theatre="HYDRA8000" port="Node2.sendBackIn1"/> 
 </coupling> 
 <coupling> 
  <source theatre="PERSEUS8000" port="Node1.askOut2"/> 
  <dest theatre="HYDRA8000" port="Node2.askIn"/> 
 </coupling> 
 <coupling> 
 ... 
</coupledmodel> 
<simulatiosettings> 
  <simulationtime>100000</simulationtime> 
</simulatiosettings> 
</Configuration> 
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