
NET CENTRIC MODELLING AND SIMULATION USING ACTORDEVS

Franco Cicirelli(a), Angelo Furfaro(b), Andrea Giordano(c), Libero Nigro(d)

(a) (b) (c) (d) Laboratorio di Ingegneria del Software (www.lis.deis.unical.it)
Dipartimento di Elettronica Informatica e Sistemistica

Università della Calabria
87036 Rende (CS) – Italy

(a)f.cicirelli@deis.unical.it, (b)a.furfaro@deis.unical.it, (c)agiordano@deis.unical.it, (d)l.nigro@unical.it

ABSTRACT
The goal of the DEVS-World project is the
development of a net-centric modelling and simulation
(NCMS) infrastructure having the net as the computer,
thus favouring different levels of interoperability among
research groups operating world wide. This paper
proposes an architecture based on web services for
NCMS using ActorDEVS. ActorDEVS is a lean and
efficient agent-based framework in Java supporting
modelling of Parallel DEVS systems under both
centralized and distributed simulation. ActorDEVS
supports custom control engines. The paper discusses
some architectural scenarios for wrapping ActorDEVS
in the DEVS-World infrastructure, opening to
interoperability with other DEVS or (possibly) non-
DEVS systems. The proposal clearly separates model
and simulation concerns. An entire model is partitioned
among a number of simulation nodes with web services,
in a case, which act as the transport layer for inter-node
message exchanges. A global coordinator with a
minimal interface of operations governs the “in-the-
large” simulation aspects.

Keywords: M&S using the Internet, agent-based DEVS,
web services, interoperability

1. INTRODUCTION
The DEVS-World project (DEVS-World 2007) aims at
developing a world-wide standard platform for
modelling and simulation (M&S), promoting
collaborative research and experimentation in the
engineering, i.e. design, evaluation, implementation,
deployment and execution of complex, scalable,
dynamic structure systems (Hu et al. 2005) belonging to
diverse and significant problem domains like biology
and bioinformatics, environment systems, traffic
simulation etc.

The project has its strength in the use of DEVS
(Zeigler et al. 2000) as the unifying M&S formalism
and an exploitation of nowadays software technologies
and middleware such as agents (Agha 1986,
Wooldridge 2002, Cicirelli et al. 2007a) and services
(Papazoglou and Georgakopulos 2003, Cicirelli et al.
2007c), which are a key for software interoperability.
The main goal is enabling the exchange of both models

and experiments among researchers and developers
operating in academic or industry labs, thus favouring
cooperation.

In this paper the ActorDEVS (Cicirelli et al. 2006,
Cicirelli et al. 2007b, Cicirelli et al. 2008) framework is
put under the perspective of DEVS-World in order to
identify possible extensions and cooperation scenarios.
ActorDEVS (see Fig. 1) is a lean and efficient agent-
based framework in Java supporting modelling of
Parallel DEVS systems under both centralized and
distributed simulation. The approach clearly separates
modelling from simulation concerns.

Both simulation and real-time execution modes are
supported for model continuity which rests on the
possibility of changing the control engine and
ultimately the time notion regulating the evolution of
the application. The approach is control-centric, in the
sense that it allows customizing the control machine
(see Fig. 1) which offers basic scheduling and
dispatching message services to actor components.

Key factors underlying ActorDEVS are the
adoption of actors (Agha 1986, Cicirelli et al. 2007d) as
programming in-the-small building blocks, and of
theatres (Cicirelli et al. 2007a) as programming in-the-
large execution loci (see Fig. 1). Adopted actors are
thread-less reactive objects which encapsulate an
internal data state (which include acquaintances, i.e.
known actors which can be contacted by messages),
have a behaviour patterned as a finite state machine, and
communicate to one another by asynchronous message
passing. Actors can migrate dynamically from a theatre
to another for reconfiguration purposes.

ActorDEVS is supported by a minimal API in
Java. Typed input/output ports are mapped on to actor
messages. Configuration operations correspond to
updating receiver information in output ports, also
during the runtime. More in general, changing actor’s
acquaintance network, a concept which is often referred
to as link mobility, is a natural way to achieve model
structure dynamism (Cicirelli et al. 2007a, Cicirelli et
al. 2007d, Cicirelli et al. 2008). Good execution
performance is ensured by having a DEVS model is
flattened from the point of view of the simulation
engine.

447

Figure 1: Actor/Theatre architecture for ActorDEVS

The paper is structured as follows. Subsequent section
introduces the DEVS-World project and its objectives
and key features. After that, a description is provided of
how Theatre/ActorDEVS architecture can be extended
for supporting NCMS. Last section discusses some
issues relevant to a pragmatic use of the resultant
architecture. Finally, future and on-going work is
summarized.

2. AN OVERVIEW OF DEVS-WORLD
Novel in the DEVS-World project is the definition of a
development methodology for supporting world-scale
distributed open systems of systems M&S (DEVS-
World 2007). Openness is a fundamental property
which expands along different directions with different
levels of integration and interoperability.

A first level of integration is relevant to model
interoperability. Many different implementations of
DEVS simulators currently exist, and usually each of
them uses a built-in modelling language often tied to a
specific programming language like Java or C++. To
cope with this problem, specific conversion tools
capable of translating a DEVS model from a language
to another can be realized. A more general solution
would be that of adopting emerging DEVS standard
language such as DEVSML (DEVS-World 2007).

Another direction of integration concerns
interoperability at architectural level. In (DEVS-World
2007) but also in (Mittal et al. 2008) the proposed
world-wide architecture is aimed at harmonizing
heterogeneous models based on special-case DEVS
tools, programming languages and engines, through the
use of Web Services and SOAP dependent messages
and other DEVS concepts (ports, simulators,
coordinator etc.). Web Services are viewed as a world-
wide glue enabling interoperation through DEVS/SOA
mechanisms, with WSDL used for web services
interface specification.

Besides standardization of models and simulation
infrastructure, the definition of a standard simulation
protocol (Xiaolin and Zeigler 2008) is mandatory. The
protocol (see Fig. 2) describes how a DEVS model
should be simulated and how service/simulation engines

should coordinate each other. Such a protocol opens
also to a scenario in which both DEVS and non-DEVS
simulators may (possibly) participate in a simulation.

CoreSimulatorInterface (see Fig. 2) is the common
interface to simulators. The term “core” means
“essential” in that as long as a simulator implements
this interface, it can participate in a simulation driven by
a DEVS coordinator. In the case of DEVS-simulators,
the CoupledSimulatorInterface is considered. This
interface extends the core interface by providing other
functionalities e.g. for adding/removing couplings
among DEVS models.

CoordinatorInterface must be implemented by the
coordinator. The coordinator is in charge of
synchronizing the activities of the various simulators
guiding them through the simulation control cycle.
Basic phases of the simulation cycle are shown in
Table 1.

In handling simulation of hierarchical coupled
models, a coordinator orchestrates a set of controlled
simulators within it and, at the same time, can
participate with peers in a coupled model above it. To
allow such downward/upward facing interfaces, the
CoupledCoordinatorInterface is introduced which
extends both the CoordinatorInterface and the
CoupledSimulatorInterface.

Figure 2: Simulation protocol in a federation of DEVS
and non-DEVS simulators

m2

LocalActorTable ControlMachine

NetworkClassLoader

ControlMachine

TransportLayer

LocalActorTable

Theatre1 Theatre2

NetworkClassLoaderTransportLayer

a1 a2 proxy of a4a3 a4 proxy of a2 a5

m1

m1 m1

m2

m2

msg logical message exchange msg actual message exchange

Coordinator

DEVS

Model

putContentOnSimulator

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

tellAll("sendMessages")

tellAll("ApplyDeltFunc”)

DEVS
Simulator

?

DEVS
Simulator

DEVS

Model

Non - DEVS
Simulator

CoupledSimulatorInterfaceCoupledSimulatorInterface CoreSimulatorInterface

448

Table 1: Simulation cycle phases
Step Description

nextTN the coordinator requests that each
simulator sends its time of next
event and takes the minimum of
the returned values to obtain the
global time of next event

computeInputOutput each simulator applies its
computeInputOutput method to
produce/gather an output that
consists of a collection of
Contents (i.e. port/value pairs)

sendMessages each simulator partitions its
output into messages intended for
recipient simulators and sends
these messages to these recipient
simulators. Sending a message
implies to call the recipient’s
putContentOnSimulator for any
target simulator

applyDeltFunc each simulator executes its
ApplyDeltFunc method which
computes the combined effect of
the received messages and
internal scheduling on its state. A
side effect is in producing the
time horizon gives back at the
nextTN

3. WRAPPING ACTORDEVS IN DEVS-WORLD
This section highlights a service-based approach
extending the Theatre/ActorDEVS architecture in order
to meet requirements of DEVS-World project. Provided
extensions support architectural interoperability among
heterogeneous DEVS simulators. The approach adopts
previously described DEVS simulation protocol. At the
moment, interoperability at modelling language level is
not addressed. Each DEVS model is assumed to be
implemented as a Java class complying with the
ActorDEVS API (Cicirelli et al. 2008).

A Coordinator is introduced in order to coordinate
the evolution of the overall simulation and it is in
charge of implementing the DEVS simulation cycle (see
Table 1). A Configurator makes it possible to configure
the whole simulation system and start execution. An
UML class diagram of system components is reported
in Fig. 3.

The Theatre component and the Configurator are
not exclusive of DEVS simulations, they are common to
all actor-based applications. The Coordinator (see Fig.
4), instead, is tightly related to DEVS-World
prospective.

A DEVSControlMachine has been purposely
developed in order to work in pair with the coordinator
and be compliant with the DEVS simulation protocol.
This control machine implements a
CoupledSimulatorInterface–like (see Fig. 2) and
behaves as a DEVS simulator.

With respect to the approach proposed in (Xiaolin
and Zeigler 2008) the Coordinator is only concerned

with the execution of the DEVS simulation cycle. In
particular it does not manage coupling information
among DEVS models. Such information is directly
handled at simulator level. In addition, being in a net-
centric context, the Coordinator must wait until all
outgoing messages, i.e. inter-simulator messages, are
received by recipient simulators before proceeding to
the applyDeltFunc phase (see Table 1). This is ensured
by Chek messages (see Fig. 4) sent by simulators to the
coordinator. Toward this, the setCoordinator method
was added to CoreSimulator (see Fig. 3). Chek
messages are actually generated at the end of
sendMessages phase and after external messages are
received.

CoupledSimulator interface (Fig. 3), which does
not introduce further methods, extends both
CoreSimulator and Coupled interfaces. This is to
guarantee a clear separation of concerns among
configuration (i.e. coupling management addressed by
the Coupled interface) and simulation aspects
(simulation protocol management addressed by the
CoreSimulator interface).

It is worthy noting, finally, that a
DEVSControlMachine is in charge of handling the
simulation needs of all the models allocated to the same
theatre. In other words, each theatre has one simulator
instead of having one simulator for every distinct
atomic model.

interface

Coordinator

setSimulators
simulate

DEVSControlMachine

ControlMachine

interface

TheatreCM

configureServer
loadApplication
stop
pause
resume
reset interface

Coupled

addCoupling

removeCoupling

Configurator

Theatre

TransportLayer

coordinates

1..*

configures

1..*

configures

configures

1..*

interface

CoupledSimulator

interface

CoreSimulator

setSimulators

computeInputOutput
applyDeltFunc
putContentOnSimulator
sendMessages
setCoordinator

initialize
nextTN

acquaintance

0..*

0..*

sendMessagesEnd

1..*

knows

Figure 3: Class diagram of system components

Figure 4: Coordinator interface

In order to support the NCMS vision, a whole
Theatre/ActorDEVS system, which can span from a
single atomic model to a complex coupled model, is
made usable through Web Services. Each system
component is made available as a Web Service by
means of specific objects called Wrappers. Client-side
interactions are instead mediated by means of specific
Proxy objects. It is worthy of note that in a service
oriented architecture the roles of client and provider are

public interface Coordinator{
 void setSimulators(SimulatorInfo[] si)throws Exception;
 void simulate(long simulationTime)throws Exception;
 void sendMessagesEnd(Check check)throws Exception;
}

449

not strictly defined, being possible for a same node to
act as client or provider on the basis of the
required/offered functionalities.

Wrappers and Proxies are transparently used. As a
consequence, would e.g. Java RMI be used in place of
Web-Services based protocols, only Wrappers and
Proxies would be accordingly changed. Fig. 5 shows the
architecture of a resultant Theatre/ActorDEVS system.

Figure 5: Architecture of a Theatre/ActorDEVS system

A Code Server is shared among theatres and it is
used as a remote Java-class repository from which
download the actor-based application to execute, i.e. in
this case the DEVS models to simulate. Configuring
and starting a simulation consists of four steps. The first
step is devoted to setting-up the Theatre nodes by
specifying the control machine, the transport layer to
use and the code server IP address.

This is accomplished by exploiting the
Configuration and Management Web Service (see the
C&M-WS in Fig. 5). After the control machine is
instantiated its functionality is made available as a Web
Service which is automatically published (see the
Simulator-WS in Fig. 5). The DEVSControlMachine
oversees message exchange with other simulators. As a
consequence, the transport layer (see the TL-WS in

Fig. 5) in this scenario is used only to manage inter-
theatre control messages.

The second step consists in assigning to each
Theatre the DEVS model(s) to simulate. A single model
may correspond to an atomic or to a coupled DEVS
component. The Java class name of each model requires
to be specified along with the parameters possibly
required by its constructor. This step is carried out by
exploiting the C&M-WS and completes when models
get assigned to target theatres, i.e. downloaded from the
code server and instantiated.

The third step consists in establishing the
necessary bindings among coordinator and simulator
services (i.e. acquaintance relationships). In particular, a
CoordinatorInfo object is provided to each simulator
and a list of all SimulatorInfo objects, relevant to
simulators involved in the federation, is furnished to
each simulator and to the coordinator. An info object
contains the name of the service and the relevant service
endpoint address which is necessary to contact and use
it. As stated above, each simulator has to know the
coordinator in order to communicate information about
the state of the current sendMessages phase (see
Table 1).

The fourth step consists in defining couplings
among deployed models in order to build the entire
simulation model. This is achieved by invoking the
method addCoupling onto simulators. Coupling
information mainly contains a couple of names,
identifying the two ports to be connected. The first
name is relevant to an output port of a DEVS
component local to the simulator. The second name is
relevant to an input port of a DEVS component which
can be either local to the simulator or residing on a
remote simulator. In the latter case, the name of the
remote simulator is provided along with coupling
information.

A naming policy is required to distinguish ports
belonging to different instances of the same model. In
particular, full name of a port is assumed to be specified
in the form modelInstanceName.portName.

Figure 6: XML schema of the configuration files

450

At runtime, remote couplings get actualized by
means of the so called RelayPort objects. Making a
remote coupling implies linking an output port of a
DEVS component to a relay port which, in turn, is
logically connected to a remote input port. All of this
makes the DEVS component unaware of network
partitioning.

All data needed during configuration steps are
contained in an XML file whose schema is reported in
Fig. 6. In the current prototype system implementation,
the Settings type is used only to contain the simulation
time info. The CodeServer and Coordinator types
contain information required to contact the relevant
components on the web (e.g. service name, host, port).
Other types are self-explanatory.

At configuration end, the Configurator may launch
the simulation by calling the simulate method on the
Coordinator which in turn triggers into execution the
simulation control loop.

4. VARIABLE STRUCTURE SYSTEM
EXAMPLE

The achieved implementation of WS-based
Theatre/ActorDEVS architecture was tested by
modelling and simulation of a variable structure system
based on server relocation (Cicirelli et al. 2008). The
modelled system consists of a collection (closed
pipeline) of interconnected node components
(see Fig. 7).

Each node receives from its environment a stream
of jobs, stores them in a buffer (of unbounded size) and
ultimately processes them using a number of server
components. A system is assumed to work with a fixed
number of servers. Servers cannot be dynamically
generated because they model physical computing
resources. However, a high loaded node can ask for a
server to its neighbours. A dispatcher component in a
node is in charge of handling the server relocation
issues. Main difference between the model as handled
in (Cicirelli et al. 2008) and here, consists in the
achievement of structure dynamism.

In (Cicirelli et al. 2008), server components
migrate from a node to another as mobile agents. In the

scenario of this paper, though, servers do not migrate
but port objects are created/destroyed dynamically in
order to contact servers.

Asking for a server may return a server port
through which a dispatcher can submit a job to a server
allocated on a different node. As a consequence, server
relocation is achieved by changing the number of
servers a node can contact to process its jobs. Different
strategies of server relocation can be considered (see
later).

Fig. 7 depicts a three node system, together with
input/output ports and connectors. Each node can direct
useful statistical data to an external Statistics
(transducer) component connected to the StatOut
output port. When used, the OverloadGenerator can
inject jobs randomly to any node.

Fig. 8 shows the internal structure of a node. Inter-
node ports serve to send/receive an ask to/from a
neighbour for a server (ask-OUT?, askIN), to
send/receive a server to/from a neighbour (moveIN?,
moveOUT?, moveIN), or to send/receive back a no
longer useful server (sendBackOUT?, sendBackIN).
Fig. 7 shows delegate connections (represented by
using dashed lines) within a coupled node. The
shadowed TimerToken component in Fig. 8 is required
only by some relocation protocols.

A high loaded node, that is a node with a pending
job but without idle servers, asks for a server port to its
neighbours. When the Dispatcher of a node receives a
request for a server, it honours the request with a server
port if at least one idle server is available. Otherwise the
request is ignored. If no server ports are obtained, a
node asks again for a server port after a certain time
delay. Three particular strategies (Cicirelli et al. 2008)
were considered about the way a node can handle
external utilizable servers.

On-demand strategy - A node which achieves an
external server, views it as an own server. Therefore,
the protocol freely distributes server ports among nodes
on a on-demand basis. It can be anticipated that this
strategy makes it possible for nodes to behave in a
selfish-way, possibly leading to an unbalanced
distribution of server use.

Figure 7: A ring of three nodes

sendBackIN

moveOUT1

askIN

sendBackIN

moveOUT2

askOUT1

sendBackOUT1

moveIN

:Node
sendBackOUT2

moveIN

jobIN

statOUT

askIN

sendBackIN

moveOUT2

askOUT1

sendBackOUT1

moveIN

:Node

askOUT2

sendBackOUT2

moveIN

jobIN

askIN askOUT2 askIN

sendBackIN

moveOUT1

askIN

sendBackIN

moveOUT2

askOUT1

sendBackOUT1

moveIN

:Node

askOUT2

sendBackOUT2

moveIN

jobIN

askIN

sendBackIN

moveOUT1

statOUT statOUT

:JobGenerator
jobOUT:OverloadGenerator

:JobGenerator
jobOUT

:JobGenerator
jobOUT

jobOUT1

jobOUT2

jobOUT3

451

Figure 8: Internal structure of a node

Debt strategy - A debt concept for server allocation
is introduced. A node which receives a server port from
a neighbour, annotates the identification of the
furnishing node. As soon as the Dispatcher of a debtor
node has no pending job but has at least one idle server,
it tries to exhaust its debits by anticipating restitution of
some server ports to its creditor nodes. Intuitively, the
protocol attempts to avoid non uniform utilization of
servers.

Token passing strategy - One server port is used as
a token which circulates upon the closed pipeline. A
node receiving the token-server can use it if has a
pending job but has no available local server.
Otherwise, or after token usage, the token is forwarded
to the next node in the ring. The strategy tries to
anticipate a server request. A node which receives the
token as well as server ports coming from neighbours,
uses the token and sends back the other server ports.

5. CONFIGURATION, DEPLOYMENT AND
SIMULATION

Some simulation experiments concerning the server
relocation model described in the previous section were
carried out by using two Theatre/ActorDEVS systems
allocated on two Win platforms.

Another Win platform was used to host the
Coordinator, the Code Server and the Configurator. The
experiments were directed to study the effects of
overloads starting from an equilibrium situation.
Simulation parameters which, under either On-Demand
or Debt strategy, ensure the buffers size or equivalently
the mean delay time of jobs is definitely constant and of
a low value are as follows.

The job interarrival time is in the interval [2,4], the
job size (which indicates the time needed to process the
job) belongs to the interval [8,15]. The time delay a
Node waits between two consecutive asks for a server
was set to 1 time unit. The number of servers initially
allocated to each node is 4. Starting from the
equilibrium, the OverloadGenerator (see Fig. 7) is
capable of injecting each generated job to a randomly
chosen node.

To respond to the overload, one additional server
was introduced, whose management ultimately depends
on the adopted strategy(ies).

For instance, under On-demand or Debt strategies
the extra server is initially assigned to a given node. In
the Token passing strategy, instead, the extra server (its
port) circulates in the pipeline ring. In this case, to avoid
Zeno behaviours, the token which reaches the node
where it was last used, is forced to wait one time unit
before starting the next round.

The job mean delay time (that is the time which
elapses between the instant in time a job is received by
Buffer and the subsequent time the job gets assigned to
a server) was measured by the Statistics components.
The investigated strategies for responding to overload
were: Debt & Token, On-demand & Token, On-demand
alone.

The DEVS models relevant to Node,
JobGenerator, OverloadGenerator and Statistics were
deployed to the Code Server. A number of Nodes,
varying from one to five, along with the relevant
instances of JobGenerators were assigned to each
Theatre. The OverloadGenerator and the Statistics were
allocated on a single Theatre. The simulation time limit
was set to tEND=105.

Different system configurations were actualized by
specifying different configuration files. An excerpt of
such a file is reported in Fig. 9. The configuration is
relevant to a relocation system model made up of two
Nodes allocated to two theatres. Only the Debt strategy
is considered.

Coupling information, common to all the
configuration files, is used to build up the overall
simulation model. In particular:

• each JobGenerator was coupled with the relevant
Node

• each Node was coupled with its neighbors in the
closed pipeline

• the OverloadGenerator was coupled with all the
Nodes

• each Node was coupled with the Statistics.

askOUT1

sendBackOUT1

moveIN

jobIN

statOUT

sendBackIN

moveOUT1

askIN askOUT2

sendBackOUT2

moveIN

sendBackIN

moveOUT2

askIN

:Buffer

:Dispatcher

:Server

getJobIN

jobReplyOUT

jobIN

getJobIN

jobReplyOUT

askIN

sendBackIN

moveOUT1

sendBackOUT1

moveIN

askOUT1 askIN

sendBackIN

moveOUT2

sendBackOUT2

moveIN

askOUT2

statOUT

jobCompletedIN

submitJobOUT

jobCompletedIN

submitJobOUT

Node
:TimerToken

setOUT notifyIN

setIN notifyOUT

[*]

[*]

452

Figure 9: An excerpt of a configuration file

Coupling information dictates system topology at
configuration time. At runtime, on the basis of the
adopted strategy, a Node may dynamically change the
servers it actually contacts without resorting to the
add/remove coupling mechanism.

Simulation experiments (see Fig. 10) indicate that
the combination of Debt & Token strategies minimizes
the job mean delay time when compared to the other
strategies.

Figure 10: Job mean delay time vs. number of nodes

6. CONCLUSIONS
A prototype version of the Theatre/ActorDEVS
architecture based on Web Services was realized and
tested. The implementation relies on Java technology.
In particular, the SOAP engine Axis (Axis website) is

used for managing WS related aspects. The following
are some points which deserve some discussion within
the community of DEVS-World.

• The DEVS simulator protocol appears “too much
synchronous” for a networked context. Many
interactions among the simulation-protocol
participants are required for each simulation step
independently from the complexity of the simulated
model. A systematic exploitation of a kind of
“lookahead” could alleviate the problem. By
exploiting lookahead the coordinator could give a
granted time to each simulator allowing a more
independent evolution of local simulation.

• Another (obvious) issue concerns simulation
performance achievable by the use of WSs. This is
not only tied to the use of verbose XML for SOAP
messaging but mainly to the management of
network connections. Simulation experiments
confirmed that network resources (connections) of
operating system may be wasted considerably
during simulation and need in general careful
control.

On-going work is directed at:

• improving the Configurator component by
providing a friendly GUI for visual system
configuration, model composition, deployment and
simulation control

• replacing Axis by other Web Service infrastructure
e.g. related to latest J2EE

• introducing a model repository service, enabling
model reuse and sharing

• adopting standard formalisms like DEVSML for
supporting DEVS modelling

• favouring model and experiments interchange by
developing translation tools allowing model
transformation from a high-level implementation-
independent formulation into the terms of a specific
DEVS setting (e.g. ActorDEVS and Java) and vice
versa

• experimenting with Theatre/ActorDEVS
architecture in an heterogeneous environment
where diverse DEVS simulators have to cooperate

• developing tools for visual modelling.

REFERENCES
Agha, G., 1986. Actors: A model for concurrent

computation in distributed systems. Cambridge,
MIT Press.

Axis website. Available from:
http://ws.apache.org/axis/index.html. [Accessed
May 2008].

Cicirelli, F., Furfaro, A., Giordano, A., Nigro, L.,
2007a. An agent infrastructure for distributed
simulations over HLA and a case study using
Unmanned Aerial Vehicles. Proceedings of 40th
Annual Simulation Symposium, IEEE Computer
Society Press, pp. 231-238, March, Norfolk (VA).

<?xml version="1.0" encoding="utf-8"?>
<Configuration name="RelocationServers"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="./TheatreDEVS.xsd">
<theatrelist>
 <theatre id="PERSEUS8000" host="perseus" port="8000">
 <controlmachine name="theatre.DEVSControlMachine"/>
 <transportlayer name="theatre.transport.WSTransport"/>
 <marshaller name="theatre.marshaler.ByteArrayMrshlr"/>
 </theatre>
 <theatre id="HYDRA8000" host="hydra" port="8000">
 ...
 </theatre>
</theatrelist>
<codeserver url="http://orion:8989"/>
<coordinator name="Coordinator" host="orion" port="8080"/>
<coupledmodel>
 <component name="Node1" theatre="PERSEUS8000">
 <componentClass name="relocation.Node"/>
 <!-- number of servers -->
 <constructorparam type="java.lang.Long" value="4"/>
 <!-- token disabled -->
 <constructorparam type="java.lang.Boolean" value="false"/>
 <!-- debt enabled -->
 <constructorparam type="java.lang.Boolean" value="true" />
 </component>
 <component name="Node2" theatre="HYDRA8000">
 <componentClass name="relocation.Node"/>
 ...
 </component>
 <component name="OverloadGenerator" theatre="PERSEUS8000">
 <componentClass name="relocation.OverloadGenerator" />
 </component>
 ...
 <coupling>
 <source theatre="PERSEUS8000" port="Node1.sendBackOut2"/>
 <dest theatre="HYDRA8000" port="Node2.sendBackIn1"/>
 </coupling>
 <coupling>
 <source theatre="PERSEUS8000" port="Node1.askOut2"/>
 <dest theatre="HYDRA8000" port="Node2.askIn"/>
 </coupling>
 <coupling>
 ...
</coupledmodel>
<simulatiosettings>
 <simulationtime>100000</simulationtime>
</simulatiosettings>
</Configuration>

1

1,3

1,6

1,9

2,2

2,5

2 3 4 5 6 7 8 9 10

Number of nodes

J
o

b
 m

e
a
n

 d
e
la

y
 (

tu
) Debt & Token

On-demand & Token

On-demand

453

Cicirelli, F., Furfaro, A., and Nigro, L., 2006. A DEVS
M&S framework based on Java and actors.
Proceedings of 2nd European Modelling and
Simulation Symposium (EMSS 2006), pp. 337-342.

Cicirelli, F., Furfaro, A., and Nigro, L., 2007b. Conflict
management in PDEVS: an experience in
modelling and simulation of time Petri nets.
Proceedings of Summer Computer Simulation
Conference (SCSC'07), pp. 349-356.

Cicirelli, F., Furfaro, A., and Nigro, L., 2007c.
Integration and interoperability between Jini
services and Web Services. Proceedings of IEEE
Int. Conf. on Services Computing (SCC'07), pp.
278-285, July.

Cicirelli, F., Furfaro, A., and Nigro, L., 2008. Actor-
based Simulation of PDEVS Systems over HLA.
Proceedings of 41st Annual Simulation Symposium
(ANSS'08), pp. 229-236, April, Ottawa, Canada.

Cicirelli, F., Furfaro, A., Nigro, L., and Pupo, F., 2007d.
A component-based architecture for modelling and
simulation of adaptive complex systems.
Proceedings of 21st European Conference on
Modelling and Simulation (ECMS’07d), 4-6 June,
Prague.

DEVS World, 2007. DEVS_WORLD: A platform for
developing advanced discrete-event simulation at
worldwide scale. Internal document.

Hu, X., Zeigler, B.P., and Mittal, S., 2005. Variable
structure in DEVS component-based modelling
and simulation. Simulation, 81(2), 91-102.

Hu, X., and Zeigler, B.P, 2004. Model continuity to
support software development for distributed
robotic systems: A team formation example. J. of
Intelligent and Robotic Systems, 39(1), 71-87.

Mittal, S., Zeigler, B.P., Martin, J.L.R., Sahin, F., and
Jamshidi, M., 2008. Modeling and simulation for
systems of systems engineering. In: System of
Systems – Innovations for the 21st Century, Wiley
(in press).

Papazoglou, M.P., and Georgakopulos, D., 2003.
Service Oriented Computing. Communications of
the ACM, 46(10), 25-28.

Xiaolin, H., and Zeigler, B.P., 2008. A Proposed DEVS
Standard: Model and Simulator Interfaces,
Simulator Protocol, Internal document.

Yu, Y.H., and Wainer, G., 2007. eCD++: an engine for
executing DEVS models in embedded platforms.
Proceedings of SCS Summer Simulation
Multiconference, pp. 323-330.

Zeigler, B.P., Praehofer, H., and Kim, T.G., 2000.
Theory of modeling and simulation. 2nd edition,
New York, NY, Academic Press.

Wooldridge, M., 2002. An introduction to multi-agent
systems. John Wiley & Sons, Ltd.

454

