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ABSTRACT 
Modelling and Simulation in Health Economy has two 
main challenges to cope with. First modelling aspects 
are widely scattered, dealing with problems in 
economy, epidemics, medical aspects and more. Second 
the identification of models is difficult as data sets are 
in some ways “hided” in different areas (clinical 
studies, statistics, economic studies, ..), quality and type 
of given data sets are various and relationships are 
complicate to identify.  This contribution shows the 
achievements of the cooperation with one of the most 
important institution in the Austrian health care system, 
which was started to optimize the solutions of problems 
mentioned above and to integrate new modelling 
approaches for analysis of data. An outline of the 
different aspects like implementation of big data sets in 
modelling of diabetes mellitus, comparisons of different 
modelling approaches, combining such approaches to 
get more effective models and implementing models 
based on clinical problems should be given. 
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1. INTRODUCTION 

 
1.1. Hybrid Simulation Cooperation 
Using combined and hybrid simulation in different 
areas the working group „Mathematical Modelling and 
Simulation” at the Vienna University of Technology  
has gained a wide knowledge about solving problems of 
combining complex data systems and difficult 
structures of systems to be modelled. Since 2005 the 
working group works in cooperation with the HVB 
(Hauptverband der österreichischen Sozial-
versicherungsträger, Abt. Gesundheitsökonomie - Main 
Association of Austrian Social Security Institutions, 
Dept. Health Economy) to implement this knowledge in 
the area of Health Care Modelling.  

 
1.2. Applications & Structure 
A main goal is to help the HVB to supply information 
and knowledge to implement an information platform. 
This platform should be able to show differences 
between the current situation and target values and to 
allow an analysis of complex situations and the 

identification of problematic situations in different areas 
of the health care system. Potential fields of activity for 
actions in the area of the Social Security Institutions or 
other areas should be identified, mentioned or at least be 
described. For these tasks appropriate methods and 
strategies should be provided. Another main goal is to 
transfer the results to different areas (process owners 
and decision makers) inside the Social Security 
Institutions (Figure 1). 

Various methods of discrete and continuous 
modelling and simulation are used and a huge amount 
of structured or unstructured data sources have to be 
analysed. The combination of methods like system 
dynamics, cellular automatons, agent based modelling, 
differential equations and other modelling techniques  
have to be compared and sometimes apply within one 
subsystem. Various Data models have to be mapped, 
basing on a very complex system of the HVB and the 
different social security institutions.  
 

 
Fig. 1: Structure and Technical Foundation of the 
Provided Data Sources 
 
A main goal of the project is to improve the state of the 
art of modelling approaches in health economy to 
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improve the opportunities in the decision processes. For 
this reason new data models, new combinations of 
modelling approaches and an improved possibility of 
parameter identification have to be provided.  

 
1.3. Subsystems and Model Approaches 
As application examples different approaches will be 
described. First there is the implementation of a System 
Dynamics model for the incidence of type-2 diabetes in 
Austria based on a model developed by A. Jones, J. 
Homer et al. for the United States of America. In this 
case a huge amount of given data sets had to be 
imported and integrated into the model. The comparison 
of classical differential equation methods and cellular 
automatons for analysis of epidemic models led to 
results for advantages and disadvantages of the different 
models. These and other results influenced a combined 
approach (Cellular Automatons and Agent Based 
Simulation) for modelling and simulating 
inhomogenous communities to analyse epidemic 
influenza scenarios. Finally the implementation of e-
information systems to provide information for 
physicians to cope with PSA measuring. 

 
2. MODELS & IMPLEMENTATIONS 
 
2.1. Using System Dynamics in modelling Diabetes 

mellitus 
Diabetes mellitus (DM) and its complications are one of 
the most challenging topics in public health care.  We 
adopted a System Dynamic (SD) model, commissioned 
by the Center for Disease Control and Prevention 
(CDC) in the USA, which has been successfully applied 
to reproduce the historical available data of the last two 
decades. The structure of the model arises not only from 
the progression of DM as a chronic disease but also 
from the available data. We adopt the model to the 
Austrian data set and enhance it to include a distinction 
by sex since different policies may become necessary. 

 
2.1.1. Decision of Modelling Technique 
There were different aspects for the choice of the 
modeling technique: 
 1.) Different players in health economy recognize 
the threat and agree that measures on an population-
wide, system-wide level have to be taken to reduce 
chronic diseases and their consequences. But most 
programs use conventional analytical methods by which 
each aspect of a complicated disease control strategy is 
addressed and evaluated separately. The advantage of 
SD here is that one gets a global picture where all 
influencing factors are incorporated and act together.  
 2.) As chronic diseases involve long time scales 
there are long delays between causes and health 
consequences making short term analysis methods 
unsuitable. Three prevention levels, of which each can 
require dozens of years of treatment, are distinguished: 
primary prevention to avoid the onset of an affliction, 
secondary prevention to avoid chronic development and 

harmful consequences and tertiary prevention to avoid 
the loss of functions.  
 3.) For every prevention level many different 
policies are available. Primary prevention includes 
behavioral and socioeconomic measures like improving 
lifestyle, working and living conditions, information, 
education and many more. Secondary prevention 
focuses on precaution and early detection. And finally 
elements of the tertiary prevention are accessibility to 
the medical treatment, improvement of compliance and 
empowerment. SD now gives the opportunity to test 
different approaches and policies simultaneously and 
observe the respective outcome. 

 
2.1.2. Modelling Approach  
In Figure 2 the population stocks and flows in the 
model are shown. Seven different population stocks are 
arranged in four groups. The first group consists only of 
one stock: the healthy adults who have a normal blood-
glucose level. The other groups each consist of two 
levels, the diagnoses and the undiagnosed ones. The 
second group is the population with pre-diabetes. These 
are people with an increased blood-glucose level but not 
yet having developed full diabetes, which constitute the 
third group. In the last group are people who not only 
have diabetes but are also stricken by consequent 
diseases. 
 

 
Fig. 2: The main stocks and flows of the model 
 

There is only one inflow of healthy adults into the first 
level, while people may die out of every level. This 
inflow is given as a time series input by statistical 
predictions. The different death rates are affected by the 
fraction of obese people of every stock, which is 
calculated in our model, as well as by the fraction of 
elderly people, which is again given as a time series. 
The basic assumption is that the relative rates of people 
with a risk factor compared to people without it remains 
constant in the respective group. Written explicitly 

 
 

 
(1) 
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holds true for every group, where P(a|b) denotes the 
conditional probability of factor a under condition b. If 
DM is already detected than also the control of the 
disease, the “disease management”, is influencing the 
death rates. With suitable initial values the dynamic 
death rates can then be calculated. 
 The flows between the different stocks are 
characterized by the following assumptions: While 
people with pre-diabetes can still recover, there is no 
way to cure DM after its onset. DM is a chronic disease 
after all and once complications occur the damage is 
dealt and cannot be undone. The onset of pre-diabetes 
and DM occur unobserved, while complications can 
also arise even if under medical supervision. All 
transition rates are affected by the elderly and the obese 
fractions of the respective populations. The progression 
rates (the horizontal untitled ones) of the detected 
populations can be influenced by the clinical 
management, like prevention measures and compliance. 
The detection rates (the vertical ones) are more difficult 
to describe: they are first order exponentially delayed 
functions of the progression rates as well as the testing 
frequency and the sensitivity of the tests. Time 
dependent input data enter in several places of DM 
detection and control incorporating different possible 
health policies. 

 
2.1.3. Data Integration  
In the original model there are over 134 different input 
parameters and not all of them can be measured 
directly. It is therefore necessary to estimate some of the 
unmeasured input parameters so that the output 
reproduces available historical data. This is the reason 
why we start the simulation in 1980 and continue it till 
2050.  
 One major difficulty encountered when modeling 
diseases in general is the estimated number of 
unreported cases. Our findings are in fairly good 
agreement to the WHO estimates of a current DM 
prevalence of 5 to 7 percent. The exact number of cases 
is not to be taken intimately, but this isn’t our goal 
anyway. In the application we want to compare 
different policies of health care management against 
each other. 
 For the analysis of the model we use data for 
Austria, since the quality of the data is very good and 
many input parameters are available, especially with 
respect to the distinction by sex. This distinction is 
made by running the model twice with different input 
parameters and then adding up the respective results. 
 The most important influencing factors are: age, 
clinical management and obesity. The age enters 
through the fraction of elderly people. The adult 
population, that is age 20 and above is given by a time 
series. The fraction of elderly people is calculated as the 
fraction of people age 65 and above compared to the 
total populatio. The calculation of the values for each 
year is done by a spline interpolation of order 3 of the 
available data. The results change less than one percent 
if linear interpolation is used. 

2.1.4. Testing of Policies 
A main part of the model was to develop a system for 
testing different policies in a kind of qualitative way. As 
an example for such a possible policy testing we 
calculated the results of the same test run with the 
difference that people spend an additional 200 kcal per 
day.  

 

 
Fig. 3: Pre-diabetes (dotted), diabetes (slash-dotted) and 
detected diabetes (solid) fractions of the adult 
population in Austria 

 

 
Fig. 4: Same as above - spending additional 200 kcal 
per day after ‘05 
 
 In Figure 4 we see the same data as in Figure 3 
with the difference that people are going for a walk at 
moderate speed for approximately an hour per day from 
2005 onwards.  
 We see that the growth of the DM percentage stops 
almost immediately and the pre-diabetes fraction 
exhibits a sharp drop. The total numbers however are 
still increasing and only due to a faster increase in the 
adult population we get a slow decline in the DM rate. 
This example is somewhat academically since it may 
not be incorporated in reality. However it shows very 
nicely that a step-like change in the entry produces a 
delayed output. While the fraction of the pre-diabetes 
population is already falling, the fraction of the people 
with diabetes continues growing for a few more years. 
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 A main goal of the project was to simulate different 
regions of health care to analyze the west-east gradient 
of life expectancy and life style in Austria. Together 
with the HVB and other public decision makers 
responsible for health care various policies may be 
tested. Especially interesting is whether different 
policies for men and women are useful. Ongoing studies 
to examine the disease management from prevention 
and early detection over lifestyle adjustment to 
compliance are suited to validate the predictions made 
by the SD model. 
 
2.2. Comparison of Different Approaches for a SIR-

Epidemic 
 

2.2.1. Problem  
Models for the spread of epidemics are nearly as old as 
the mathematical theory of differential equations. The 
classical methods applied for modeling such epidemics 
used to be ODE -Systems but unfortunately these 
systems are limited in some respect. They become 
particularly complicated or insufficient when spatial 
components of disease propagation should be taken into 
account. This corresponds to the fact that the basic 
assumption of the classical Kermack – Mc Kendrick (in 
1926) model, where the numbers of involved 
individuals (S, I, R) are described by the following 
system of ordinary differential equations (ODE). 
 

 
 
 

(2) 
 
 
 

 
is a homogeneous population. Spatial inhomogeneities 
become especially relevant when vaccination strategies 
or partitions of the population are observed. In this 
approach different types of introducing spatial patterns 
into these dynamics were compared. The applied 
techniques cover lattice gas cellular automata (LGCA), 
stochastic cellular automata (SCA) and partial 
differential equations (PDE).  

 
2.2.2. Different Modelling Techniques 
A first step towards to an extended model with better 
spatial behavior was to define a detailed lattice gas 
cellular automaton (FHP-LGCA). This approach was 
validated for the classical structure with the ODE – 
System. Furthermore vacation strategies where tested 
and we see that we get better behavior for the whole 
system.  
 By stochastic cellular automata (SCA) we refer to 
ordinary cellular automata (without considering motion 
of particles) with a stochastically determined 
neighbourhood. To define a “sociological” 
neighbourhood in the SCA model, that provides a 
gradation for the occurrence of interaction between 

individuals, a decaying likelihood of interaction 
between cells depending on the distance between them 
can be used. This approach delivers a radial-symmetric 
distribution of the contacts for each cell, what 
principally can be described by an arbitrary probability 
distribution or a similar function, which we denote 
likelihood functions.  
 It is not difficult to show that this approach extends 
the classical model by a spatial component. The ODEs 
are again an upper bound concerning the speed of 
spread and a lower bound for spatial inhomogeneities. If 
the SCA establishes contact between each two cells 
(dissolution of the local character and increase of 
speed), a probability of infection for every individual is 
obtained. 
 Finding a connection to the LGCA approach on the 
contrary is not straight forward. It is possible to find 
some rules of thumb concerning the weight factors for 
the SCA, but these rules deliver rather imprecise results 
and only apply to specific conditions. The difficulty lies 
in finding a tool that relates motion of particles in the 
LGCA with distributed contacts in SCA. 
 Despite this serious difference, we can always find 
appropriate parameters for the stochastic CA to fit the 
behavior of the epidemic in the LGCA model. By 
introducing cyclic motion in the HPP automaton, we 
minimize the direct interaction area of each individual 
and thus can easily find a corresponding radius of 
interaction and the appropriate number of contacts per 
time step for the stochastic CA. We see, that even 
without this modification – if the motion in the FHP 
automaton is determined by standard FHP-I transition 
rules for example – we can find parameters, which 
deliver the same quantitative and qualitative behavior. 
The same is true for the classical SIR model, which 
requires an infinite radius of interaction and an infinite 
number of contacts per time step. 
 Another completely different approach towards an 
extended SIR model can be by partial differential 
equations. A modified heat-conduction equation and a 
suitable discrete solution method was defined with a 
second order Taylor - polynomial for model 
simplification. This two dimensional model also fits the 
time behaviour of the spread of an epidemic in a better 
way than the classical Kermack – Mc Kendrick 
equations. We compare the diffusion of the infections 
from the PDE model with the spread of epidemics in 
CA models. The advanced CA model is simpler to 
adapt and fits the real behaviour of an epidemic in an 
adequate way. 

 
2.2.3. Results 
The key output value was the number of currently 
infected individuals but also a visualisation of the 
density of infected individuals on the domain permits 
conclusions on the model behaviours. The input 
parameters involved the size of the domain (grid size), 
the number of performed time steps, the disease stage 
transition parameters, the number of runs used for 
generating an averaged result (Monte Carlo method) 
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and the parameter t of the diffusion distribution that was 
used in the PDE approach. Results are shown in Fig. 5.  
 

 
 
Fig. 5. A lattice representation of the FHP LGCA 
approach (left), the SCA approach (centre) and the PDE 
approach (right). Light pixels mark high densities of 
infected particles and dark pixels mark low densities. 
This figure does not show specific results but is 
intended to demonstrate general lattice representations. 
 
 An optimal model identification would persist, if 
the differences are minimal for arbitrary parameter 
settings. In our case there exist two (heuristic) 
parameter regions, which deliver good respectively bad 
correspondence in the model behaviours.  
 Even though all these methods involve distinct 
types of spatial interaction, it can be shown, that 
consistent qualitative and quantitative model behaviour 
can be obtained by means of parameter adaptions and 
slight technical modifications. These modifications are 
motivated by stochastic analysis of distributed 
interaction (PDE, SCA) and diffusion dynamics 
(LGCA) as well as prevailing physical analogies. The 
law of large numbers permits to approximate stochastic 
contacts by distributed interaction. Diffusion of 
particles can be approximated through empiric 
adjustment of a Gaussian diffusion distribution. 
 
2.3. Combined Modelling for Analysis of Influenza 

Epidemics 
 
2.3.1. Modelling Influenza 
In the course of the project to analyse influenza 
epidemics a hybrid mathematical model was 
established. The classic methods applied for modelling 
such epidemics used to be ODE-Systems but 
unfortunately these systems are limited in some respect. 
They become particularly complicated and complex 
beyond limit when observing heterogeneous 
populations and spatial components. Thus the potential 
of alternative approaches – namely cellular automata 
(CA) and agent based systems (AB) – is analysed in the 
beginning of this work. 
 Analysis of these methods was split into two major 
parts. The first one being the theoretical one in which 
the methods were compared in order to locate their 
respective strengths and weaknesses. The second part 
being the practical analysis including behaviour of the 
implementations. 

 
2.3.2. Combining CA and AB Simulation 
In the model an average persons day is divided in three 
major parts being working time or time at school, 

leisure time and social life and as a third part time at 
home respectively sleeping.  At the work place, child 
care facility or school a person is going to meet the 
same people every day. During leisure time a person 
usually visits friends, doctors, goes shopping and so on 
and usually stays within a defined surrounding. The 
people one meets during this time are often the same. 
Finally being at home it is assumed that only the family 
is together. There are no long-distance contacts 
included. We also do not consider all contacts during 
the leisure time but simply replace them by a 
“neighbourhood” of random people. 
 An Agent based approach to control the whole 
system and cellular automata to model the subsystems 
(schools, working places, neighbourhoods, etc.). Such a 
structure would allow our agents to switch easily from 
one sub-system to another, without any time gaps 
within the model. At the beginning of the model the 
population is randomly initialized with the parameters 
derived from demographic data. This means that every 
agent does have a unique ID, a certain health state, an 
age, a work place (or child care facility respectively 
school) depending on its age, an assigned household 
and neighbourhood.  Every day all agents move to their 
work places (respectively schools or child care 
facilities) and spend the working time there. Excluded 
from this procedure are senior citizens which are 
assumed to stay at home during this time. The 
simulation of the working time is done by cellular 
automata: every workplace is simulated in a separate 
automaton. This is convenient to implement and offers 
great potential for parallelization. This is becoming 
specially interesting in the near future with increasing 
numbers of cores on CPUs. 
 After work the agents proceed to the 
neighbourhoods which are again simulated separately 
by cellular automata, thus parallelization is applicable 
here as well. It would be possible to process several 
households/neighbourhoods parallel on machines with 
multiple processors or cores and by this improve the 
performance of the model. At the end of the day the 
agents return into their households. Here infection is 
simulated by simple probabilities since contact between 
all members of the household can be taken as given. In 
single households infection is of course not possible 
 
2.3.3. Scenarios 
As the advantages are described in chapter 2.2. also the 
main advantage of this implementation is the possibility 
to experiment with different policies and even more 
important in this case with given data sets from the “real 
life”. As an important aspect the model can relative 
easily be adapted to new findings an results from our 
cooperation partner. As one quantitative result we 
found, that the number of infected can be reduced by 
45% if every fifth already infected stays at home.  

 
2.4. PSA value changes over time 
Additional a project is mentioned that is based on the 
observation of a quasi – exponential ascent of PSA 
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(prostate specific antigen) – value during affection on 
prostate cancer.   
The input parameters of the model are three 
measurements of the marker in the blood of the patient 
at different times. An important appraisal of the 
characteristics of the illness is the so called doubling 
time of the PSA value. Furthermore, after ablation of 
the prostate, it can be tested with this marker, if parts of 
the afflicted tissue are still in the body of the patient. 
As it is nearly impossible for human beings to find the 
exact exponential fitting curve through three 
measurement points and to see when the doubling time 
of the last measurement occurs, computers are used for 
calculation. For this reason an internet based tool for 
assistance in analysis of the behaviour was developed 
for the users. Important additional features of the new 
tool, comparing with other systems developed in the 
USA, are the graphical output of the results for a better 
comprehension also from the patients and the 
comparison with a linear approximation curve, which is 
a common effect for elderly patients. Starting with three 
measurements a nonlinear optimization with the 
principle of least square error method is implemented.  
 
One of the main tasks and improvements to other 
methods is to question the reliability of the results. This 
second task is dealing with the minimal and maximal 
doubling time depending on the occurrence of 
measurement errors.  
 

     
 

Fig. 6 Solutions with error afflicted input data, the two 
arrows in the right section of the figure, point out the 
minimal and maximal doubling time, as calculated for 
the exponential growth model assumption 
 
The result, which is calculated through solving the 
solution routine with different randomly disturbed 
measurement data streams, is visualized by plotting all 
exponential interpolation curves and an interval, 
whereby the left boundary is the minimal doubling time 
and the right sides is the maximum doubling time 
depending. This is done to help the user defining the 
next date for new measurements. 

 
2.5. Modelling and Simulation Results 
By now the project showed that the possibilities of 
parameter identification and reaction times for 
integrating new data sets could be improved. As the 

diabetes model showed the possibility of working 
together the models for epidemic problems or technical 
solutions were the first proves for solving concrete 
problems and improving the possibilities of modelling 
and simulation in this field. 
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