
INTERNAL/EXTERNAL EVENT – STRUCTURE IN SIMULATORS – CASE STUDIES
WITH ARGESIM COMPARISONS

Felix Breitenecker(a), Siegfried Wassertheurer(b), Štefan Emrich(c), Nikolas Popper(d), Günther Zauner(e)

(a) (c) (e)Vienna Univ. of Technology, Austria
(b)ARCS - smart Biomedical Systems, Austria

(d) (e)“die Drahtwarenhandlung” Simulation Services, Austria

(a)Felix.Breitenecker@tuwien.ac.at, (b)siegfried.wassertheurer@arcsmed.at, (c)semrich@aurora.anum.tuwien.ac.at,
(d)niki.popper@drahtwarenhandlung.at, (e)Guether.Zauner@drahtwarenhandlung.at,

ABSTRACT
Object-oriented approaches, UML – notation, DAE
modelling, variable structure modelling, Modelica nota-
tion and other developments have extended the CSSL
standard for simulation languages essentially. After a
review of the extended CSSL structure, this contribu-
tion classifies state events in continuous system model-
ling and develops a concept of internal / external state
events, which allows modelling of structural dynamic
systems in a proper way. Additionally, this concept can
be ‘mapped’ onto the structure of several simulation
languages. The application of the concept is docu-
mented by several implementation examples.

Keywords: Simulation software, hybrid structures,
structural dynamic systems, feature comparison

1. INTRODUCTION – CLASSIC CSSL STRUC-

TURE
Simulation supported various developments in engi-
neering and other areas, and simulation groups and so-
cieties were founded. One main effort of such groups
was to standardise digital simulation programs and to
work with a new basis: not any longer simulating the
analog computer, but a self-standing structure for simu-
lation systems. There were some unsuccessful attempts,
but in 1968, the CSSL Standard became the milestone
in the development: it unified the concepts and language
structures of the available simulation programs, it de-
fined a structure for the model, and it describes minimal
features for a runtime environment.

The CSSL standard suggests structures and fea-
tures for a model frame and for an experimental frame.
This distinction is based on Zeigler’s concept of a strict
separation of these two frames. Model frame and ex-
perimental frame are the user interfaces for the heart of
the simulation system, for the simulator kernel or simu-
lation engine. A translator maps the model description
of the model frame into state space notation, which is
used by the simulation engine solving the system gov-
erning ODEs. This basic structure of a simulator is il-
lustrated in Figure 1; an extended structure with service
of discrete elements is given in figure 3.

In CSSL’s model frame, a system can be described
in three different ways, as an interconnection of blocks,
by mathematical expressions, and by conventional pro-
gramming constructs as in FORTRAN or C.

Mathematical basis is for the simulation engine is
the state space description

00)(),,),(),(()(xtxpttutxftx rrrrrr
&r == , (1)

which is used by the ODE solvers of the simulation en-
gine. Any kind of textual model formulation, of graphi-
cal blocks or structured mathematical description or
host languages constructs must be transformed to an in-
ternal state equation of the structure given above, so that
the vector of derivatives),,,(ptuxf rrrr

can be calculated
for a certain time instant),),(),((pttutxff iiiii

rrrrr
= . This

vector of derivates is fed into an ODE solver in order to
calculate a state update),.(1 hfxx iii

rrr
Φ=+ , h stepsize

(all controlled by the simulation engine).
Essential is CSSL’s concept of SECTIONs or RE-

GIONs, giving a certain structure to the model descrip-
tion. First, CSSL defines a set of operators like INTEG,
which formulates parts of the state space description for
the system governing ODEs. Other memory operators
like DELAY for time delays, TABLE functions for
generating (technical) tables, and transfer functions
complete dynamic modelling parts. The dynamic model
description builds up the DYNAMIC or DERIVATIVE
section of the model description. Mapping the model
description onto state space description, requires auto-
matic sorting of the equations (blocks) to proper order
of the calculation – an essential feature of the translator.

Sometimes together with the state space equations
we also meet parameter equations, parameter dependent
initial values, and calculations with the terminal values
(e.g. for cost functions in an optimisation). In principle,
all this calculations could be done in the dynamic model
description, but then they are calculated at each evalua-
tion of the derivative vector of the ODE solver – al-
though they have to be calculated only once.

408

Figure 1: Basic Structure of a Simulation Language due
to CSSL Standard

As example, we consider the model description for

a pendulum. The well-known equations (length l, mass
m, and damping coefficient d) and initial values and pa-
rameters are given by

m
db

l
ga

n

m
d

l
gt

====

−−=

,,0,

,sin)(

00 ϕπϕ

ϕϕϕ

&

&&&
 (2)

A structured model description in ACSL (Section

5.2) generates efficient code: only the DERIVATIVE
section is translated into the derivative vector function,
while INITIAL and TERMINAL section are translated
into functions called evaluated separately only once
(Table 1).

It is task of the translator, to recognise the static
elements, and to sort them separately from the dynamic
equations, so that for the simulation engine dynamic
equations (derivative), initial and parameter equations
(initial), and terminal equations (terminal), are provided in
separate modules.

Table 1: ACSL Structured Textual Model Description

PROGRAM math_pendulum
! --- structured CSSL model --------------------
! --- model parameters -------------------------
 CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m
CONSTANT g=9.81, pi=3.141592653; dphi0=0
CONSTANT pintel=2

INITIAL ! calculation with parameters-----------
 phi0 = pi/pintel; a = g/l; b = d/m
END ! of INITIAL -------------------------------
 DERIVATIVE ! ODE model --------------------
 phi = integ (dphi, phi0)
 dphi = integ (-gdl*sin(phi)-ddm*dphi, dphi0)
 END ! of DERIVATIVE --------------------------
TERMINAL ! calculations with final states ------
 phi_grad = phi*180/pi
END ! of TERMINAL ------------------------------
END ! of Program -------------------------------

2. DISCRETE ELEMENTS IN CONTINUOUS

SIMULATION – ARGESIM BENCHMARKS
The CSSL standard also defines segments for discrete
actions, first mainly used for modelling discrete control.
So-called DISCRETE regions or sections manage the

communication between discrete and continuous world
and compute the discrete model parts.

In graphical model description, discrete controllers
and the time delay could be modelled by a z-transfer
blocks, delay blocks and discrete controllers.

New versions of e.g. SIMULINK (Section 5.1) of-
fer more complex discrete model parts, as triggered
submodels, which can be executed only at one time in-
stant.

For incorporating discrete actions, the simulation
engine must interrupt the ODE solver and handle the
event. For generality, efficient implementations set up
and handle event lists, representing the time instants of
discrete actions and the calculations associated with the
action, where in-between consecutive discrete actions
the ODE solver is to be called.

In order to incorporate DAEs and discrete ele-
ments, the simulator’s translator must now extract from
the model description the dynamic differential equations
(derivative), the dynamic algebraic equations (alge-
braic), and the events (event i) with static algebraic
equations and event time, as given in Figure 2 (extended
structure of a simulation language due to CSSL stan-
dard). In principle, initial equations, parameter equa-
tions and terminal equations (initial, terminal) are special
cases of events at time t = 0 and terminal time. Some
simulators make use of a modified structure, which puts
all discrete actions into one event module, where CASE
- constructs distinguish between the different events.

2.1. State Events in Continuous Models
Much more complicated, but defined in CSSL, are the
so-called state events. Here, a discrete action takes place
at a time instant, which is not known in advance, it is
only known as a function of the states.

As example, we consider the pendulum with con-
straints - Constrained Pendulum, being one of the so-
called ARGESIM Benchmarks for Modelling and
Simulation (published in the journal SNE – Simulation
News Europe). If the pendulum is swinging, it may hit
a pin positioned at angle ϕp with distance lp from the
point of suspension. In this case, the pendulum swings
on with the position of the pin as the point of rotation.
The shortened length is ls = l - lp. and the angular veloc-
ity ϕ& is changed at position ϕp from ϕ& to sll /⋅ϕ& , etc.
These discontinuous changes are state events, not
known in advance.

For such events, the classical state space description
is extended by the so-called state event function

)),(),((ptutxh rrr , the zero of which determines the event:

0),),(),((
),,),(),(()(

=
=

tptutxh
tptutxftx

rrr

rrrrr
 (3)

The event actions are usually discontinuous

changes of parameters, inputs, states and model equa-
tions or model dimension, resp. In this notation, the
model for Constrained Pendulum is given by

409

0),(

,sin,

121

21221

=−=

−−==

ph
m
d

l
g

ϕϕϕϕ

ϕϕϕϕϕ && (4)

The example involves two different events: change

of length parameter, and change of state, i.e. angle ve-
locity. Generally, state events (SE) can be classified in
four types:

• Type 1 – parameters change discontinuously

(SE-P),
• Type 2 - inputs change discontinuously (SE-I),
• Type 3 - states change discontinuously (SE-S),

and
• Type 4 - state vector dimension changes (SE-

D), including total change of model equations.

The event actions are discontinuous changes of pa-
rameters, inputs, states and model equations or model
dimension, resp. Suppose, t* is the (unknown) time in-
stant of the event, the changes may be given in mathe-
matical notation, where t*- indicates the value before,
and t*+ the values after the event:

)*()*(
)*()*(
)*()*(
)*()*(

+−

+−

+−

+−

→

→

→

→

tntn
txtx
tutu
tptp

rr

rr
 (5)

In case of the Constrained Pendulum the events are

hitting and leaving the pin, and the discontinuous
changes are given by

)()(

),()(

)()(

),()(

)(),()(

)(),()(

−+−

+−−

−+−

+−−

+−+−−

+−+−−

=

→

=

→

=→

=→

leave

s

leave

leaveleave

hitshit

hithit

leaveleaveleave

s
hithithit

t
l
lt

tt

t
l
l

t

tt

ltltltl

ltltltl

ϕϕ

ϕϕ

ϕϕ

ϕϕ

&&

&&

&&

&& (6)

State events type 1 (SE-P) could also be formu-

lated by means of IF-THEN-ELSE constructs and by
switches in graphical model descriptions, without syn-
chronisation with the ODE solver. The necessity of a
state event formulation depends on the accuracy
wanted. Big changes in parameters may cause problems
for ODE solvers with step size control.

State events of type 3 (SE-S) are essential state
events. They must be located, transformed into a time
event, and modelled in discrete model parts.

State events of type 4 (SE-D) are also essential
ones. In principle, they are associated with hybrid mod-

elling: models following each other in consecutive order
build up a sequence of dynamic processes. And conse-
quently, the structure of the model itself is dynamic.

2.2. State Event Handling
The handling of a state event requires four steps:

1. Detection of the event, usually by checking the

change of the sign of h(x) within the solver
step over [ti, ti+1]

2. Localization of the event by a proper algorithm
determining the time t* when the event occurs
and performing the last solver step over [ti, t*]

3. Service of the event: calculating / setting new
parameters, inputs and states; switching to new
equations

4. Restart of the ODE solver at time t* with solv-
er step over [t*= ti+1, ti+2]

State events are facing simulators with severe prob-

lems. Up to now, the simulation engine had to call inde-
pendent algorithms, now a root finder for the state event
function h needs results from the ODE solver, and the
ODE solver calls the root finder by checking the sign of h.
For finding the root of the state event function h(x), ei-
ther interpolative algorithms (MATLAB/Simulink; Sec-
tion 5.1) or iterative algorithms are used (ACSL, Sec-
tion 5.2; Dymola, Section 5.3.1)

Figure 2: Extended Structure of a Simulation System
due to Extensions of the CSSL Standard with Discrete
Elements and with DAE Models.

Figure 2 also shows the necessary extensions for

incorporating state events. The simulator’s translator
must extract from the model description additionally the
state event functions (state event j) with the associated
event action – only one state event shown in the figure).
In the simulator kernel, the static event management
must be made dynamically: state events are dynamically
handled and transformed to time events. In principle,
the kernel of the simulation engine has become an event
handler, managing a complex event list with feedbacks.

410

In case of a structural change of the system equa-
tions (state event of type 4 – SE-D), simulators usually
can manage only fixed structures of the state space. The
technique used is to ‘freeze’ the states that are bound by
conditions causing the event. In case of a complete
change of equations, both systems are calculated to-
gether, freezing one according to the event.

One way around is to make use of the experimental
frame: the simulation engine only detects and localises
the event, and updates the system until the event time.
Then control is given back to the experimental frame.
The state event is now serviced in the experimental
frame, using features of the environment. Then a new
simulation run is restarted (modelling of the structural
changes in the experimental frame).

Table 2: Constrained Pendulum: Continuous Model
with State Events (ACSL)

PROGRAM constrained pendulum
CONSTANT m = 1.02, g = 9.81, d =0.2
CONSTANT lf=1, lp=0.7
DERIVATIVE dynamics
 ddphi = -g*sin(phi)/l – d*dphi/m
 dphi = integ (ddphi, dphi0)
 phi = integ (dphi, phi0)
 SCHEDULE hit .XN. (phi-phip)
 SCHEDULE leave .XP. (phi-phip)
END ! of dynamics
DISCRETE hit
 l = ls; dphi = dphi*lf/ls
END ! of hit
DISCRETE leave
 l = lf; dphi = dphi*ls/lf
END ! of leave;

END ! of constrained pendulum

The Constrained Pendulum example involves a

state event of type 1 (SE-P) and type 3 (SE-S). A clas-
sical ACSL (Section 5.2) model description works with
two discrete sections hit and leave, representing the
two different modes, both called from the dynamic
equations in the derivative section (Table 2). Dymola
(Section 5.3.1) defines events and their scheduling im-
plicitly by WHEN – or IF - constructs in the dynamic
model description, in case of the discussed example e.g. by

 WHEN phi-phip=0 AND phi>phip
 THEN l = ls; dphi = dphi*lf/ls

In case of more complex event descriptions, the

WHEN – or IF – clauses are put into an ALGORITHM
section, similar to ACSL’s DISCRETE section.

In graphical model descriptions, we are faced with
the problem that calculations at discrete time instants
are difficult to formulate. For the detection of the event,
SIMULINK provides the HIT CROSSING block (in
new Simulink version implicitly defined). This block
starts state event detection (interpolation method) de-
pending on the input, the state event function, and out-
puts a trigger signal, which may call a triggered subsys-
tem servicing the event.

2.3. ARGESIM Benchmarks
In 1990, the journal SNE – Simulation News Europe –
started a series on Comparison of Simulation Software,
which has been developed to Benchmarks for Modelling
and Simulation Techniques. Up to now, 20 comparisons
and benchmarks have been defined, and about 250 solu-
tions have been published – being a very valuable
source for discussing and documenting various aspects
of modelling and simulation approaches.

Some of these benchmarks address state events,
hybrid systems, and structural dynamic systems:

• C 3 - Analysis of a Generalized Class-E Am-

plifier
• C 5 - Two State Model
• C 7 - Constrained Pendulum
• C 11 - SCARA Robot
• C 12 - Collision Processes in Rows of Spheres
• C 13 - Crane Crab with Embedded Control

This contribution mainly concentrates on Bench-

mark C5 Constrained Pendulum, involving state events
of type SE-P and SE-S. With respect to state event
types, the following list gives information about occur-
rence or possible model approaches in benchmarks:

• SE-P: C3, C5, C7, C11, C12, C13
• SE-T: C3, C12, C13
• SE-S: C3, C5, C7, C11, C12, C13
• SD-D: C3, C5, C7, C11, C13

At present, further benchmarks are in preparation,

among them an extended benchmark for hybrid sys-
tems. Detailed information about definitions and solu-
tions to these benchmarks can be found in SNE,
www.argesim.org.

3. MODELLING WITH STATE CHARTS
In the end of the 1990s, computer science initiated a
new development for modelling discontinuous changes.
The Unified Modelling Language (UML) is one of the
most important standards for specification and design of
object oriented systems. This standard was tuned for
real time applications in the form of a new proposal,
UML Real-Time (UML-RT). By means of UML-RT,
objects can hold the dynamic behaviour of an ODE.

In 1999, a simulation research group at the Techni-
cal University of St. Petersburg used this approach in
combination with a hybrid state machine for the devel-
opment of a hybrid simulator AnyLogic (Section 5.4).
The modelling language is an extension of UML-RT; the
main building block is the Active Object. Active objects
have internal structure and behaviour, and allow encapsu-
lating of other objects to any desired depth. Relationships
between active objects set up the hybrid model.

Active objects interact with their surroundings
solely through boundary objects: ports for discrete
communication, and variables for continuous communi-
cation (Figure 3). The activities within an object are usu-
ally defined by state charts (extended state machine).

411

While discrete model parts are described by means of state
charts, events, timers and messages, the continuous model
parts are described by means of ODEs and DAEs in
CSSL-type notation and with state charts within an object.

Figure3: Active Objects with Connectors - Discrete
Messages (Rectangles) and Continuous Signals (Trian-
gles)

An AnyLogic implementation of the well-known
Bouncing Ball example shows a simple use of state chart
modelling (Figure 4). The model equations are defined in
the active object ball, together with the state chart
ball.main. This state chart describes the interruption of the
state flight (without any equations) by the event bounce
(SE-P and SE-S event) defined by condition and action.

Figure 4: AnyLogic Model for the Bouncing Ball

AnyLogic influenced further developments for hy-

brid and structural dynamic systems, and led to a dis-
cussion in the Modelica community with respect to a
proper implementation of state charts in Modelica. The
principle question is, whether state charts are to be seen
as comfortable way to describe complex WHEN – and
IF – constructs, being part of the model, or whether
state charts control different models from a higher level.
At present (2008) a free Modelica state chart library
‘emulates’ state charts by Boolean variables and IF –
THEN – ELSE constructs. A further problem is the fact,
that the state chart notation is not really standardised;
AnyLogic makes use of the Harel state chart type.

Figure 5: AnyLogic model for Constrained Pendulum,
Simple Implementation

4. HYBRID AND STRUCTURAL-DYNAMIC

SYSTEMS
Hybrid systems often come together with a change of the
dimension of the state space, then called structural-
dynamic systems. The dynamic change of the state space
is caused by a state event of type SE-D. In contrary to
state events SE-P and SE-S, states and derivatives may
change continuously and differentiable in case of struc-
tural change. In principle, structural-dynamic systems can
be seen from two extreme viewpoints. The one says, in a
maximal state space, state events switch on and off alge-
braic conditions, which freeze certain states for certain
periods. The other one says that a global discrete state
space controls local models with fixed state spaces,
whereby the local models may be also discrete or static.
These viewpoints derive two different approaches, the
maximal state space, and the hybrid decomposition.

4.1. Maximal State Space for Structural-Dynamic

Systems – Internal Events
Most implementations of physically based model de-
scriptions support a big monolithic model description,
derived from laws, ODEs, DAEs, state event functions
and internal events. The state space is maximal and
static, index reduction in combination with constraints
keep a consistent state space. The approach can be clas-
sified with respect to event implementation. The ap-
proach handles all events of any kind (SE-P, SE-S, and
SE-D) within the ODE solver frame, also events which
change the state space dimension (change of degree of
freedoms) – consequently called internal events – I-SE.

Using the classical state chart notation, internal
state events I-SE caused by the model schedule the mo-
del itself, with usually different re-initialisations (de-
pending on the event type I-SE-P, I-SES, I-SE-D; Fig.
6). VHDL-AMS and Dymola follow this approach,
handling also DAE models with index > 1. Discrete
model parts are only supported at event level. ACSL
and MATLAB / Simulink generate also a maximal state
space.

412

Figure 6: State Chart Control for Internal Events of one
Model

4.2. Hybrid Decomposition for Structural-Dynamic

Systems – External Events
The hybrid decomposition approach makes use of external
events (E-SE), which controls the sequence and the serial
coupling of one model or of more models. A convenient
tool for switching between models is a state chart, driven
by the external events – which itself are generated by the
models. Control for continuous models and for discrete
actions can by modelled by state charts. Figure 7 (left)
shows the hybrid coupling of two models, which may be
extended to an arbitrary number of models, with possible
events E-SE-P, E-SE-S, and ESE-D.

As special case, this technique may be also used for
serial conditional ‘execution’ of one model – Figure 7
(only for SE-P and SE-S).

Figure 7: State Chart Control for External Events for
two Models (left) and for one Model (right).

This approach additionally allows not only dynami-

cally changing state spaces, but also different model types,
like ODEs, linear ODEs (to be analysed by linear theory),
PDEs, etc. to be processed in serial or also in parallel, so
that also co-simulation can be formulated based on exter-
nal events. The approach allows handling all events also
outside the ODE solver frame. After an event, a very new
model can be started. This procedure may make sense es-
pecially in case of events of type SE-D and SE-S. As con-
sequence, consecutive models of different state spaces may
be used.

Figure 8 shows a structure for a simulator supporting
structural dynamic modelling and simulation. The figure
summarises the outlined ideas by extending the CSSL
structure by control model, external events and multiple
models. The main extension is that the translator generates
not only one DAE model; he generates several DAE mod-
els from the (sub)model descriptions, and external events

from the connection model, controlling the model execu-
tion sequence in the highest level of the dynamic event list.

There, all (sub-) models may be precompiled, or the
new recent state space may be determined and translated to
a DAE system in case of the external event (interpretative
technique).

Figure 8: Structure for a Simulation System with Exter-
nal State Events E-SE and Classical Internal State
Events I-SE for Controlling Different Models.

4.3. Mixed Approach with Internal and External

Events
A simulator structure as proposed in Figure 8 is a very
general one, because it allows as well external as ell as in-
ternal events, so that hybrid coupling with variable state
models of any kind with internal and external events is
possible (Figure 9). Both approaches have advantages and
disadvantages. The classical Dymola approach generates a
fast simulation, because of the monolithic program. How-
ever, the state space is static. A hybrid approach handles
separate model parts and must control the external events.
Consequently, two levels of programs have to be gener-
ated: dynamic models, and a control program – today’s
implementations are interpretative and not compiling. A
challenge for the future lies in the combination of both
approaches. The main ideas are:

• Moderate hybrid decomposition
• External and internal events
• Efficient implementation of models and con-

trol

413

Figure 9: State Chart Control for Different Models with
Internal and External Events.

For instance, for parameter state events (SE-P) an

implementation with an internal event may be sufficient
(I-SE-P), for an event of SE-S type implementation
with an external event may be advantageous because of
easier state re-initialisation (E-SE-S), and for a struc-
tural model change (SE-D) an implementation with an
external event may be preferred (E-SE-D), because of
much easier handling of the dynamic state change – and
less necessity for index reduction. An efficient control
of the sequence of models can be made by state charts,
but also by a well-defined definitions and distinction of
IF - and WHEN - constructs, like discussed in exten-
sions of Scilab/Scicos for Modelica models.

5. STRUCTURAL FEATURES IN SIMULA-

TORS
Structural dynamic system are up to now – 2008 – a
challenge for simulators. In principle, model-compiling
simulators must ‘emulate’ the dynamic structure in a
maximal state space by switching between ‘active’
states, while interpreting simulators can switch between
different models by means of a control model handling
the structural changes.

But there exist also mixed strategies. In the following,
some simulators are discussed with respect to their features
for structural dynamic systems. Mainly using the bench-
mark Constrained Pendulum, in detail features for state
chart modelling (as convenient tool for control models)
and features for hybrid decomposition are investigated:

• Support of state chart modelling or of a similar

construct, by means of textual or graphical
constructs.

• Decomposition of structural dynamic systems
with dynamic features– features for external
events.

5.1. MATLAB / Simulink / Stateflow
The mainly interpretative systems MATLAB / Simulink
offer different approaches. First, MATLAB itself allows
any kind of static and dynamic decomposition, but
MATLAB is not a simulator, because the model equa-
tions have to be provided in a sorted manner.

Second, MATLAB allows hybrid decomposition at
MATLAB level with Simulink models. There, from
MATLAB level, different Simulink models are called
conditionally, and in Simulink, a state event is deter-

mined by the hit-crossing block (terminating the simula-
tion). For control, in MATLAB only IF – THEN con-
structs are available. Table 3 – MATLAB control
model, and Figure 10 – graphical Simulink model, show
a hybrid decomposition of this type for the Constrained
Pendulum.

Table 3: MATLAB Control Model for Constrained
Pendulum with External Events Switching between
Long and Short Pendulum

 if ((phi_p-phi0)*phi_p<0 |
 (phi0==phi_p & phi_p*v>0))
 dphi0=v/ls;
 sim('pendulum_short',[t(length(t)),10]);
 v=dphi(length(dphi))*ls;
 else
 dphi0=v/l;
 sim('pendulum_long',[t(length(t)),10]);
 v=dphi(length(dphi))*l;
 end

MATLAB is a very powerful environment with

various modules. Simulink is MATLAB’s simulation
module for block-oriented dynamic models (directed
signal graphs), which can be combined with Stateflow,
MATLAB’s module for event-driven state changes de-
scribed by state chart.

Figure 10: Simulink Model for Constrained Pendulum
with External Event detected by Hit-Crossing Block.

At Simulink level, Stateflow, Simulink’s state

chart modelling tool, may control different submodels.
These submodels may be dynamic models based on
ODEs (DAEs), or static models describing discrete ac-
tions (events). Consequently, Stateflow can be used for
implementation of the Constrained Pendulum, where
the state charts control length and change of velocities
in case of hit by triggering the static changes (Figure
11). A solely Simulink implementation would make use
of a triggered submodels describing the events by AND
– and OR – blocks, or by a MATLAB function.

Alternatively, for Constrained Pendulum Stateflow
could control two different submodels representing long
and short pendulum enabled and disabled by the state
chart control. Internally Simulink generates a state space
with ‘double’ dimension, because Simulink can only
work with a maximal state space and does not allow hy-
brid decomposition.

414

Figure11: Simulink Model for Constrained Pendulum
with External Event (Hit-Crossing Block, Stateflow)

5.2. ACSL
ACSL – Advanced Continuous Simulation Language –
has been developed since more than 25 years. ACSL was
strongly influenced by the CSSL standard. ACSL’ soft-
ware structure is a direct mapping of the structure in Fig-
ure 2. Implementations of the Constrained Pendulum
have been shown in the previous sections Table 1, Table
2), as example for modelling due to CSSL standard.

A very interesting additional ACSL module is an
extended environment called ACSLMath. ACSLMath
was intended to have same features as MATLAB; avail-
able is only a subset, but powerful enough for an ex-
tended environment, which can be used for hybrid de-
composition of a structural dynamic model in almost
the same way than MATLAB does (the MATLAB
model in Table 3 can be used in ACSLMath, only by
replacing the sim calls by run calls).

5.3. MODELICA - Simulators
In the 1990s, many attempts have been made to improve
and to extend the CSSL structure, especially for the task
of mathematical modelling. The basic problem was the
state space description, which limited the construction of
modular and flexible modelling libraries. Two develop-
ments helped to overcome this problem. On modelling
level, the idea of physical modelling gave new input, and
on implementation level, the object-oriented view helped
to leave the constraints of input/output relations.

In physical modelling, a typical procedure for mod-
elling is to cut a system into subsystems and to account
for the behaviour at the interfaces. Balances of mass, en-
ergy and momentum and material equations model each
subsystem. The complete model is obtained by combin-
ing the descriptions of the subsystems and the interfaces.

This approach requires a modelling paradigm differ-
ent to classical input/output modelling. A model is con-
sidered as a constraint between system variables, which

leads naturally to DAE descriptions. The approach is
very convenient for building reusable model libraries.

These ideas stimulated the development of the
simulator Dymola, whose modelling frame has been ex-
tended to a general standardised modelling language
called Modelica. Modelica is intended for modelling
within many application domains such as electrical cir-
cuits, multibody systems, drive trains, hydraulics,
thermo-dynamical systems, and chemical processes etc. It
supports several modelling formalisms: ordinary differ-
ential equations, differential-algebraic equations, bond
graphs, finite state automata, and Petri nets etc. Modelica
serves as a standard format so that models arising in dif-
ferent domains can be exchanged between tools and users.

Up to now – similar to VHDL-AMS – some simu-
lation systems understand Modelica (2008; generic –
new simulator with Modelica modelling, extension -
Modelica modelling interface for existing simulator):

• Dymola from Dynasim (generic),
• MathModelica from MathCore Engineering

(generic)
• SimulationX from ISI (generic/extension)
• Scilab/Scicos (extension)
• MapleSim (extension, announced)
• Open Modelica - since 2004 the University of

Lyngby develops an provides an open Mode-
lica simulation environment (generic),

• Mosilab - Fraunhofer Gesellschaft develops a
generic Modelica simulator, which supports
dynamic variable structures (generic)

• Dymola / Modelica blocks in Simulink

As Modelica also incorporates graphical model ele-

ments, the user may choose between textual modelling,
graphical modelling, and modelling using elements from
an application library. Furthermore, graphical and textual
modelling may be mixed in various kinds. The minimal
modelling environment is a text editor; a comfortable en-
vironment offers a graphical modelling editor.

The Constrained Pendulum example can be formu-
lated in Modelica textually as a physical law for angular
acceleration. The event with parameter change is put
into an algorithm section, defining and scheduling the
parameter event SE-P (Table 4). As instead of angular
velocity, the tangential velocity is used as state variable,
the second state event SE-S ‘vanishes’.

Table 4: Textual Modelica Model for Constrained Pen-
dulum

 equation /*pendulum*/
 v = length*der(phi);
 vdot = der(v);
 mass*vdot/length + mass*g*sin(phi)
 +damping*v = 0;
 algorithm
 if (phi<=phipin) then length:=ls; end if;
 if (phi>phipin) then length:=l1; end if;

415

But Modelica allows also combining textual and
graphical modelling. For the Constrained Pendulum ex-
ample, the basic physical dynamics could be modelled
graphically with joint and mass elements, and the event
of length change is described in an algorithm section,
with variables interfacing to the predefined variables in
the graphical model part (Figure 12).

algorithm
if (revolute1.phi
 <= phipin then
 revolute1.length:=ls;
end if;
if (revolute1.phi
 < phipin then
 revolute1.length:=ll;
end if;

Figure 12: Mixed Graphical and Textual Modelica
Model for Constrained Pendulum

5.3.1. Dymola
Dymola was the first Modelica simulator. Dymola, in-
troduced by F. E. Cellier as a-causal modelling lan-
guage, and developed to a simulator by H. Elmquist,
can be called the mother of Modelica. Dymola clearly
can understand the Modelica models given in Table 4
and Figure 12. Dymola offers also a Modelica – com-
patible state chart library, which allows to model com-
plex conditions (internally translated into IF – THEN –
ELSE or WHEN constructs). Figure 14 shows an im-
plementation of the Constrained Pendulum using this
library.

5.3.2. Mosilab
Since 2004, Fraunhofer Gesellschaft Dresden develops a
generic simulator Mosilab, which also initiates an exten-
sion to Modelica: multiple models controlled by state
automata, coupled in serial and in parallel. Furthermore,
Mosilab puts emphasis on co-simulation and simulator
coupling, whereby for interfacing the same constructs are
used than for hybrid decomposition. Mosilab is a generic
Modelica simulator.

Figure 13: Graphical Dymola Model for Constrained
Pendulum with Internal Events Managed by Elements
of Dymola’s State Chart Library

Mosilab implements extended state chart modelling,
which may be translated directly due to Modelica stan-
dard into equivalent IF – THEN constructs, or which can
control different models and model executions. At state
chart level, state events of type SE-D control the switch-
ing between different models and service the events (E-
SE-D). State events affecting a state variable (SE-S type)
can be modelled at this external level (E-SE-S type), or
also as classic internal event (I-SE-S). Mosilab translates
each model separately, and generates a main simulation
program out of state charts, controlling the call of the
precompiled models and passing data between the mod-
els, so that the software model of Mosilab follows the
structure in Figure 8. The constructs for the state charts
are modifications of state chart modelling in AnyLogic.

Mosilab allows very different approaches for mod-
elling and simulation tasks, to be discussed with the
Constrained Pendulum example. Three different model-
ling approaches reflect the distinction between internal
and external events as discussed before.

Mosilab Standard Modelica Model. In a standard Mode-
lica approach, the Constrained Pendulum is defined in the
MOSILAB equation layer as implicit law; the state event,
which appears every time when the rope of the pendulum
hits or ‘leaves’ the pin, is modelled in an algorithm
section with if (or when) – conditions (Table 7).

Table 5: Mosilab Model for Constrained Pendulum –
Standard Modelica Approach - Internal Events (I-SE-P)

 equation /*pendulum*/
 v = l1*der(phi); vdot = der(v);
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0;
 algorithm
 if (phi<=phipin) then length:=ls; end if;
 if (phi>phipin) then length:=l1; end if;
 end

Mosilab I-SE-P Model with State Charts. MOSI-
LAB’s state chart approach models discrete elements by
state charts, which may be used instead of IF - or
WHEN - clauses, with much higher flexibility and read-
ability in case of complex conditions. There, Boolean
variables define the status of the system and are man-
aged by the state chart.

Table 6: Mosilab Model for Constrained Pendulum –
State Chart Model with Internal Events (I-SE-P)

event Boolean lengthen(start=false),
 shorten(start = false);
equation
lengthen=(phi>phipin); shorten=(phi<=phipin);
equation /*pendulum*/
 v = l1*der(phi); vdot = der(v);
 mass*vdot/l1 + mass*g*sin(phi)+damping*v= 0;
statechart
 state LengthSwitch extends State;
 State Short,Long,Initial(isInitial=true);
transition Initial -> Long end transition;
transition Long -> Short event shorten action
 length := ls;
end transition;
….;

Table 6 shows a Mosilab implementation of the

Constrained Pendulum: state charts initialise the system

416

and manage switching between long and short pendu-
lum, by changing the length appropriately.

Mosilab E-SE-P Model. Mosilab’s state chart construct
is not only a good alternative to IF - or WHEN - clauses
within one model, it offers also the possibility to switch
between structural different models. This very powerful
feature allows any kind of hybrid composition of mod-
els with different state spaces and of different type
(from ODEs to PDEs, etc.). Table 7 shows a Mosilab
implementation of the Constrained Pendulum making
use of two different pendulum models, controlled exter-
nally by a state chart.

Here, the system is decomposed into two different
models, Short pendulum model, and Long pendulum
model, controlled by a state chart. The model descrip-
tion (Table 7) defines now first the two pendulum mod-
els, and then the event as before. The state chart creates
first instances of both pendulum models during the ini-
tial state (new). The transitions organise the switching
between the pendulums (remove, add). The connect
statements are used for mapping local to global state.

Table 7: Mosilab Model for Constrained Pendulum –
State Chart Switching between Different Pendulums
Models by External Events (E-SE-P)

model Long
equation
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0;
end Long;
model Short
equation
 mass*vdot/ls + mass*g*sin(phi)+damping*v = 0;
end Short;
event discrete Boolean lengthen(start=true),
equation
 lengthen =
 (phi>phipin);shorten=(phi<=phipin);
statechart
state ChangePendulum extends State;
 State Short,Long,startState(isInitial=true);
transition startState -> Long action
 L:=new Long(); K:=new Short(); add(L);
end transition;
transition Long->Short event shorten action
 disconnect ….; remove(L); add(K); connect …
end transition;
transition Short -> Long event lengthen
 action;disconnect…;remove(K);add(L);connect ……
end transition; end ChangePendulum;

5.4. AnyLogic – Hybrid State Chart Simulator
AnyLogic – already discussed in section 3) is based on
hybrid automata. Consequently, hybrid decomposition
and control by external events is possible. In AnyLogic,
various implementations for the Constrained Pendulum
are possible. A classical implementation is given in Fig-
ure 5, following classical textual ODE modelling,
whereby instead of IF – THEN clauses a state chart is
used for switching (I-SE-P, I-SE-S).

AnyLogic E-SE-P Model with State Charts. A hy-
brid decomposed model makes use of two different mod-
els, defined in substate / submodel Short and Long. –
part of a state chart switching between these submodels.
The events defined at the arcs stop the actual model, set
new initials and start the alternative model (Figure 13).

AnyLogic E-SE-P Model with Parallel Models.
AnyLogic works interpretatively, after each external
event state equations are tracked and sorted anew for
the new state space. This makes it possible, to decom-
pose model not only in serial, but also in parallel (Fig-
ure 14).

Equations Constrained Pendulum
parameter …
end Constrained pendulum
Equations Short
d(alpha)/dt = omega
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls
Change eventLong;
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ls/ll; stop
end Short
Equations Long
d(alpha)/dt = omega
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll
Change eventShort
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ll/ls; stop
end Long

Figure 13: AnyLogic Model for Constrained Pendulum,
Hybrid Model Decomposition with two Pendulum
Models and External Events

Equations Constrained Pendulum
d(alpha)/dt = omega
x = l*sin(alpha); y = l*cos(alpha)
end Constrained pendulum
Equations Short
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls
Change eventLong
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ls/ll; stop
end Short
Equations Long
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll
Change eventShort
(alpha>=alphaN)||(alpha<=alphaN)
Action; omega=omega*ll/ls; stop
end Long

Figure 14: AnyLogic Model for Constrained Pendulum,
Hybrid Model Decomposition with Two Models for
Angular Velocity and Overall Model for Angle

REFERENCES
Breitenecker F., Troch I., 2004. Simulation Software –

Development and Trends. In: Unbehauen H., Troch
I., Breitenecker F., eds. Modelling and Simulation of
Dynamic Systems / Control Systems, Robotics, and
Automation. Oxford: Eolss Publishers, .

Fritzson, P, 2005. Principles of Object-Oriented Modeling
and Simulation with Modelica. Wiley IEEE Press.

Nytsch-Geusen C, Schwarz P, 2005. MOSILAB: Devel-
opment of a Modelica based generic simulation tool

417

supporting model structural dynamics. Proc. 4th In-
tern. Modelica Conference, 527-535. March 2005,
Hamburg.

Strauss J. C. 1967. The SCi continuous system simulation
language (CSSL). Simulation 9: 281-303.

418

