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ABSTRACT 
Object-oriented approaches, UML – notation, DAE 
modelling, variable structure modelling, Modelica nota-
tion and other developments have extended the CSSL 
standard for simulation languages essentially. After a 
review of the extended CSSL structure, this contribu-
tion classifies state events in continuous system model-
ling and develops a concept of internal / external state 
events, which allows modelling of structural dynamic 
systems in a proper way. Additionally, this concept can 
be ‘mapped’ onto the structure of several simulation 
languages. The application of the concept is docu-
mented by several implementation examples. 
 
Keywords: Simulation software, hybrid structures, 
structural dynamic systems, feature comparison 
 
1. INTRODUCTION – CLASSIC CSSL STRUC-

TURE 
Simulation supported various developments in engi-
neering and other areas, and simulation groups and so-
cieties were founded. One main effort of such groups 
was to standardise digital simulation programs and to 
work with a new basis: not any longer simulating the 
analog computer, but a self-standing structure for simu-
lation systems. There were some unsuccessful attempts, 
but in 1968, the CSSL Standard became the milestone 
in the development: it unified the concepts and language 
structures of the available simulation programs, it de-
fined a structure for the model, and it describes minimal 
features for a runtime environment. 

The CSSL standard suggests structures and fea-
tures for a model frame and for an experimental frame. 
This distinction is based on Zeigler’s concept of a strict 
separation of these two frames. Model frame and ex-
perimental frame are the user interfaces for the heart of 
the simulation system, for the simulator kernel or simu-
lation engine. A translator maps the model description 
of the model frame into state space notation, which is 
used by the simulation engine solving the system gov-
erning ODEs. This basic structure of a simulator is il-
lustrated in Figure 1; an extended structure with service 
of discrete elements is given in figure 3. 

In CSSL’s model frame, a system can be described 
in three different ways, as an interconnection of blocks, 
by mathematical expressions, and by conventional pro-
gramming constructs as in FORTRAN or C. 

Mathematical basis is for the simulation engine is 
the state space description 
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which is used by the ODE solvers of the simulation en-
gine. Any kind of textual model formulation, of graphi-
cal blocks or structured mathematical description or 
host languages constructs must be transformed to an in-
ternal state equation of the structure given above, so that 
the vector of derivatives ),,,( ptuxf rrrr

can be calculated 
for a certain time instant ),),(),(( pttutxff iiiii

rrrrr
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vector of derivates is fed into an ODE solver in order to 
calculate a state update ),.(1 hfxx iii

rrr
Φ=+ , h stepsize 

(all controlled by the simulation engine). 
Essential is CSSL’s concept of SECTIONs or RE-

GIONs, giving a certain structure to the model descrip-
tion. First, CSSL defines a set of operators like INTEG, 
which formulates parts of the state space description for 
the system governing ODEs. Other memory operators 
like DELAY for time delays, TABLE functions for 
generating (technical) tables, and transfer functions 
complete dynamic modelling parts. The dynamic model 
description builds up the DYNAMIC or DERIVATIVE 
section of the model description. Mapping the model 
description onto state space description, requires auto-
matic sorting of the equations (blocks) to proper order 
of the calculation – an essential feature of the translator. 

Sometimes together with the state space equations 
we also meet parameter equations, parameter dependent 
initial values, and calculations with the terminal values 
(e.g. for cost functions in an optimisation). In principle, 
all this calculations could be done in the dynamic model 
description, but then they are calculated at each evalua-
tion of the derivative vector of the ODE solver – al-
though they have to be calculated only once. 
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Figure 1: Basic Structure of a Simulation Language due 
to CSSL Standard 

 
As example, we consider the model description for 

a pendulum. The well-known equations (length l, mass 
m, and damping coefficient d) and initial values and pa-
rameters are given by 
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A structured model description in ACSL (Section 

5.2) generates efficient code: only the DERIVATIVE 
section is translated into the derivative vector function, 
while INITIAL and TERMINAL section are translated 
into functions called evaluated separately only once 
(Table 1). 

It is task of the translator, to recognise the static 
elements, and to sort them separately from the dynamic 
equations, so that for the simulation engine dynamic 
equations (derivative), initial and parameter equations 
(initial), and terminal equations (terminal), are provided in 
separate modules.  
 
Table 1: ACSL Structured Textual Model Description 
 
PROGRAM math_pendulum 
! --- structured CSSL model -------------------- 
! --- model parameters ------------------------- 
  CONSTANT m=1, l=1, d=0.3 ! kg, m, N*s/m  
CONSTANT g=9.81, pi=3.141592653; dphi0=0 
CONSTANT pintel=2 

INITIAL ! calculation with parameters----------- 
    phi0 = pi/pintel; a = g/l; b = d/m 
END ! of INITIAL ------------------------------- 
  DERIVATIVE ! ODE model -------------------- 
    phi = integ ( dphi,        phi0) 
    dphi = integ (-gdl*sin(phi)-ddm*dphi, dphi0) 
  END ! of DERIVATIVE -------------------------- 
TERMINAL ! calculations with final states ------ 
    phi_grad = phi*180/pi 
END ! of TERMINAL ------------------------------ 
END ! of Program ------------------------------- 
 

 
2. DISCRETE ELEMENTS IN CONTINUOUS 

SIMULATION – ARGESIM BENCHMARKS 
The CSSL standard also defines segments for discrete 
actions, first mainly used for modelling discrete control. 
So-called DISCRETE regions or sections manage the 

communication between discrete and continuous world 
and compute the discrete model parts. 

In graphical model description, discrete controllers 
and the time delay could be modelled by a z-transfer 
blocks, delay blocks and discrete controllers. 

New versions of e.g. SIMULINK (Section 5.1) of-
fer more complex discrete model parts, as triggered 
submodels, which can be executed only at one time in-
stant. 

For incorporating discrete actions, the simulation 
engine must interrupt the ODE solver and handle the 
event. For generality, efficient implementations set up 
and handle event lists, representing the time instants of 
discrete actions and the calculations associated with the 
action, where in-between consecutive discrete actions 
the ODE solver is to be called. 

In order to incorporate DAEs and discrete ele-
ments, the simulator’s translator must now extract from 
the model description the dynamic differential equations 
(derivative), the dynamic algebraic equations (alge-
braic), and the events (event i) with static algebraic 
equations and event time, as given in Figure 2 (extended 
structure of a simulation language due to CSSL stan-
dard). In principle, initial equations, parameter equa-
tions and terminal equations (initial, terminal) are special 
cases of events at time t = 0 and terminal time. Some 
simulators make use of a modified structure, which puts 
all discrete actions into one event module, where CASE 
- constructs distinguish between the different events. 
 
2.1. State Events in Continuous Models 
Much more complicated, but defined in CSSL, are the 
so-called state events. Here, a discrete action takes place 
at a time instant, which is not known in advance, it is 
only known as a function of the states. 

As example, we consider the pendulum with con-
straints - Constrained Pendulum, being one of the so-
called ARGESIM Benchmarks for Modelling and 
Simulation (published in the journal SNE – Simulation 
News Europe). If the pendulum is swinging, it may hit 
a pin positioned at angle ϕp with distance lp from the 
point of suspension. In this case, the pendulum swings 
on with the position of the pin as the point of rotation. 
The shortened length is ls = l - lp. and the angular veloc-
ity ϕ&  is changed at position ϕp from ϕ&  to sll /⋅ϕ& , etc. 
These discontinuous changes are state events, not 
known in advance. 

For such events, the classical state space description 
is extended by the so-called state event function 

)),(),(( ptutxh rrr , the zero of which determines the event: 
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The event actions are usually discontinuous 

changes of parameters, inputs, states and model equa-
tions or model dimension, resp. In this notation, the 
model for Constrained Pendulum is given by 
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The example involves two different events: change 

of length parameter, and change of state, i.e. angle ve-
locity. Generally, state events (SE) can be classified in 
four types:  

 
• Type 1 – parameters change discontinuously 

(SE-P), 
• Type 2 - inputs change discontinuously (SE-I), 
• Type 3 - states change discontinuously (SE-S), 

and 
• Type 4 - state vector dimension changes (SE-

D), including total change of model equations. 
 

The event actions are discontinuous changes of pa-
rameters, inputs, states and model equations or model 
dimension, resp. Suppose, t* is the (unknown) time in-
stant of the event, the changes may be given in mathe-
matical notation, where t*- indicates the value before, 
and t*+ the values after the event: 
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In case of the Constrained Pendulum the events are 

hitting and leaving the pin, and the discontinuous 
changes are given by 
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State events type 1 (SE-P) could also be formu-

lated by means of IF-THEN-ELSE constructs and by 
switches in graphical model descriptions, without syn-
chronisation with the ODE solver. The necessity of a 
state event formulation depends on the accuracy 
wanted. Big changes in parameters may cause problems 
for ODE solvers with step size control. 

State events of type 3 (SE-S) are essential state 
events. They must be located, transformed into a time 
event, and modelled in discrete model parts.  

State events of type 4 (SE-D) are also essential 
ones. In principle, they are associated with hybrid mod-

elling: models following each other in consecutive order 
build up a sequence of dynamic processes. And conse-
quently, the structure of the model itself is dynamic. 

 
2.2. State Event Handling 
The handling of a state event requires four steps: 

 
1. Detection of the event, usually by checking the 

change of the sign of h(x) within the solver 
step over [ti, ti+1]  

2. Localization of the event by a proper algorithm 
determining the time t* when the event occurs 
and performing the last solver step over [ti, t*] 

3. Service of the event: calculating / setting new 
parameters, inputs and states; switching to new 
equations 

4. Restart of the ODE solver at time t* with solv-
er step over [ t*= ti+1, ti+2] 

 
State events are facing simulators with severe prob-

lems. Up to now, the simulation engine had to call inde-
pendent algorithms, now a root finder for the state event 
function h needs results from the ODE solver, and the 
ODE solver calls the root finder by checking the sign of h. 
For finding the root of the state event function h(x), ei-
ther interpolative algorithms (MATLAB/Simulink; Sec-
tion 5.1) or iterative algorithms are used (ACSL, Sec-
tion 5.2; Dymola, Section 5.3.1) 
 

 
Figure 2: Extended Structure of a Simulation System 
due to Extensions of the CSSL Standard with Discrete 
Elements and with DAE Models. 

 
Figure 2 also shows the necessary extensions for 

incorporating state events. The simulator’s translator 
must extract from the model description additionally the 
state event functions (state event j) with the associated 
event action – only one state event shown in the figure). 
In the simulator kernel, the static event management 
must be made dynamically: state events are dynamically 
handled and transformed to time events. In principle, 
the kernel of the simulation engine has become an event 
handler, managing a complex event list with feedbacks. 
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In case of a structural change of the system equa-
tions (state event of type 4 – SE-D), simulators usually 
can manage only fixed structures of the state space. The 
technique used is to ‘freeze’ the states that are bound by 
conditions causing the event. In case of a complete 
change of equations, both systems are calculated to-
gether, freezing one according to the event. 

One way around is to make use of the experimental 
frame: the simulation engine only detects and localises 
the event, and updates the system until the event time. 
Then control is given back to the experimental frame. 
The state event is now serviced in the experimental 
frame, using features of the environment. Then a new 
simulation run is restarted (modelling of the structural 
changes in the experimental frame). 

 
Table 2: Constrained Pendulum: Continuous Model 
with State Events (ACSL) 

 

PROGRAM constrained pendulum 
CONSTANT m = 1.02, g = 9.81, d =0.2 
CONSTANT lf=1, lp=0.7 
DERIVATIVE dynamics 
  ddphi = -g*sin(phi)/l – d*dphi/m 
  dphi  = integ ( ddphi, dphi0) 
  phi   = integ ( dphi, phi0) 
  SCHEDULE hit   .XN. (phi-phip) 
  SCHEDULE leave .XP. (phi-phip) 
END ! of dynamics 
DISCRETE hit 
  l = ls; dphi = dphi*lf/ls 
END ! of hit 
DISCRETE leave 
  l = lf; dphi = dphi*ls/lf 
END ! of leave;  

END ! of constrained pendulum 
 

 
The Constrained Pendulum example involves a 

state event of type 1 (SE-P) and type 3 (SE-S). A clas-
sical ACSL (Section 5.2) model description works with 
two discrete sections hit and leave, representing the 
two different modes, both called from the dynamic 
equations in the derivative section (Table 2). Dymola 
(Section 5.3.1) defines events and their scheduling im-
plicitly by WHEN – or IF - constructs in the dynamic 
model description, in case of the discussed example e.g. by 
 

 

   WHEN phi-phip=0 AND phi>phip  
   THEN l = ls; dphi = dphi*lf/ls 
 

 
In case of more complex event descriptions, the 

WHEN – or IF – clauses are put into an ALGORITHM 
section, similar to ACSL’s DISCRETE section. 

In graphical model descriptions, we are faced with 
the problem that calculations at discrete time instants 
are difficult to formulate. For the detection of the event, 
SIMULINK provides the HIT CROSSING block (in 
new Simulink version implicitly defined). This block 
starts state event detection (interpolation method) de-
pending on the input, the state event function, and out-
puts a trigger signal, which may call a triggered subsys-
tem servicing the event. 

 

2.3. ARGESIM Benchmarks  
In 1990, the journal SNE – Simulation News Europe – 
started a series on Comparison of Simulation Software, 
which has been developed to Benchmarks for Modelling 
and Simulation Techniques. Up to now, 20 comparisons 
and benchmarks have been defined, and about 250 solu-
tions have been published – being a very valuable 
source for discussing and documenting various aspects 
of modelling and simulation approaches.  

Some of these benchmarks address state events, 
hybrid systems, and structural dynamic systems: 

 
• C 3 - Analysis of a Generalized Class-E Am-

plifier 
• C 5 - Two State Model 
• C 7 - Constrained Pendulum 
• C 11 - SCARA Robot 
• C 12 - Collision Processes in Rows of Spheres 
• C 13 - Crane Crab with Embedded Control 
 
This contribution mainly concentrates on Bench-

mark C5 Constrained Pendulum, involving state events 
of type SE-P and SE-S. With respect to state event 
types, the following list gives information about occur-
rence or possible model approaches in benchmarks: 

 
• SE-P: C3, C5, C7, C11, C12, C13 
• SE-T: C3, C12, C13 
• SE-S: C3, C5, C7, C11, C12, C13 
• SD-D: C3, C5, C7, C11, C13 
 
At present, further benchmarks are in preparation, 

among them an extended benchmark for hybrid sys-
tems. Detailed information about definitions and solu-
tions to these benchmarks can be found in SNE, 
www.argesim.org. 

 
3. MODELLING WITH STATE CHARTS 
In the end of the 1990s, computer science initiated a 
new development for modelling discontinuous changes. 
The Unified Modelling Language (UML) is one of the 
most important standards for specification and design of 
object oriented systems. This standard was tuned for 
real time applications in the form of a new proposal, 
UML Real-Time (UML-RT). By means of UML-RT, 
objects can hold the dynamic behaviour of an ODE.  

In 1999, a simulation research group at the Techni-
cal University of St. Petersburg used this approach in 
combination with a hybrid state machine for the devel-
opment of a hybrid simulator AnyLogic (Section 5.4). 
The modelling language is an extension of UML-RT; the 
main building block is the Active Object. Active objects 
have internal structure and behaviour, and allow encapsu-
lating of other objects to any desired depth. Relationships 
between active objects set up the hybrid model. 

Active objects interact with their surroundings 
solely through boundary objects: ports for discrete 
communication, and variables for continuous communi-
cation (Figure 3). The activities within an object are usu-
ally defined by state charts (extended state machine). 
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While discrete model parts are described by means of state 
charts, events, timers and messages, the continuous model 
parts are described by means of ODEs and DAEs in 
CSSL-type notation and with state charts within an object. 
 

 
Figure3: Active Objects with Connectors - Discrete 
Messages (Rectangles) and Continuous Signals (Trian-
gles) 
 

An AnyLogic implementation of the well-known 
Bouncing Ball example shows a simple use of state chart 
modelling (Figure 4). The model equations are defined in 
the active object ball, together with the state chart 
ball.main. This state chart describes the interruption of the 
state flight (without any equations) by the event bounce 
(SE-P and SE-S event) defined by condition and action. 
 

 
Figure 4: AnyLogic Model for the Bouncing Ball 

 
AnyLogic influenced further developments for hy-

brid and structural dynamic systems, and led to a dis-
cussion in the Modelica community with respect to a 
proper implementation of state charts in Modelica. The 
principle question is, whether state charts are to be seen 
as comfortable way to describe complex WHEN – and 
IF – constructs, being part of the model, or whether 
state charts control different models from a higher level. 
At present (2008) a free Modelica state chart library 
‘emulates’ state charts by Boolean variables and IF – 
THEN – ELSE constructs. A further problem is the fact, 
that the state chart notation is not really standardised; 
AnyLogic makes use of the Harel state chart type. 
 

 
Figure 5: AnyLogic model for Constrained Pendulum, 
Simple Implementation 

 
4. HYBRID AND STRUCTURAL-DYNAMIC 

SYSTEMS 
Hybrid systems often come together with a change of the 
dimension of the state space, then called structural-
dynamic systems. The dynamic change of the state space 
is caused by a state event of type SE-D. In contrary to 
state events SE-P and SE-S, states and derivatives may 
change continuously and differentiable in case of struc-
tural change. In principle, structural-dynamic systems can 
be seen from two extreme viewpoints. The one says, in a 
maximal state space, state events switch on and off alge-
braic conditions, which freeze certain states for certain 
periods. The other one says that a global discrete state 
space controls local models with fixed state spaces, 
whereby the local models may be also discrete or static. 
These viewpoints derive two different approaches, the 
maximal state space, and the hybrid decomposition. 

 
4.1. Maximal State Space for Structural-Dynamic 

Systems – Internal Events 
Most implementations of physically based model de-
scriptions support a big monolithic model description, 
derived from laws, ODEs, DAEs, state event functions 
and internal events. The state space is maximal and 
static, index reduction in combination with constraints 
keep a consistent state space. The approach can be clas-
sified with respect to event implementation. The ap-
proach handles all events of any kind (SE-P, SE-S, and 
SE-D) within the ODE solver frame, also events which 
change the state space dimension (change of degree of 
freedoms) – consequently called internal events – I-SE. 

Using the classical state chart notation, internal 
state events I-SE caused by the model schedule the mo-
del itself, with usually different re-initialisations (de-
pending on the event type I-SE-P, I-SES, I-SE-D; Fig. 
6). VHDL-AMS and Dymola follow this approach, 
handling also DAE models with index > 1. Discrete 
model parts are only supported at event level. ACSL 
and MATLAB / Simulink generate also a maximal state 
space. 
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Figure 6: State Chart Control for Internal Events of one 
Model 

 
4.2. Hybrid Decomposition for Structural-Dynamic 

Systems – External Events 
The hybrid decomposition approach makes use of external 
events (E-SE), which controls the sequence and the serial 
coupling of one model or of more models. A convenient 
tool for switching between models is a state chart, driven 
by the external events – which itself are generated by the 
models. Control for continuous models and for discrete 
actions can by modelled by state charts. Figure 7 (left) 
shows the hybrid coupling of two models, which may be 
extended to an arbitrary number of models, with possible 
events E-SE-P, E-SE-S, and ESE-D. 

As special case, this technique may be also used for 
serial conditional ‘execution’ of one model – Figure 7 
(only for SE-P and SE-S). 
 

 
Figure 7: State Chart Control for External Events for 
two Models (left) and for one Model (right). 

 
This approach additionally allows not only dynami-

cally changing state spaces, but also different model types, 
like ODEs, linear ODEs (to be analysed by linear theory), 
PDEs, etc. to be processed in serial or also in parallel, so 
that also co-simulation can be formulated based on exter-
nal events. The approach allows handling all events also 
outside the ODE solver frame. After an event, a very new 
model can be started. This procedure may make sense es-
pecially in case of events of type SE-D and SE-S. As con-
sequence, consecutive models of different state spaces may 
be used. 

Figure 8 shows a structure for a simulator supporting 
structural dynamic modelling and simulation. The figure 
summarises the outlined ideas by extending the CSSL 
structure by control model, external events and multiple 
models. The main extension is that the translator generates 
not only one DAE model; he generates several DAE mod-
els from the (sub)model descriptions, and external events 

from the connection model, controlling the model execu-
tion sequence in the highest level of the dynamic event list.  

There, all (sub-) models may be precompiled, or the 
new recent state space may be determined and translated to 
a DAE system in case of the external event (interpretative 
technique). 
 

 
Figure 8: Structure for a Simulation System with Exter-
nal State Events E-SE and Classical Internal State 
Events I-SE for Controlling Different Models. 

 
4.3. Mixed Approach with Internal and External 

Events 
A simulator structure as proposed in Figure 8 is a very 
general one, because it allows as well external as ell as in-
ternal events, so that hybrid coupling with variable state 
models of any kind with internal and external events is 
possible (Figure 9). Both approaches have advantages and 
disadvantages. The classical Dymola approach generates a 
fast simulation, because of the monolithic program. How-
ever, the state space is static. A hybrid approach handles 
separate model parts and must control the external events. 
Consequently, two levels of programs have to be gener-
ated: dynamic models, and a control program – today’s 
implementations are interpretative and not compiling. A 
challenge for the future lies in the combination of both 
approaches. The main ideas are: 

 
• Moderate hybrid decomposition 
• External and internal events 
• Efficient implementation of models and con-

trol 
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Figure 9: State Chart Control for Different Models with 
Internal and External Events. 

 
For instance, for parameter state events (SE-P) an 

implementation with an internal event may be sufficient 
(I-SE-P), for an event of SE-S type implementation 
with an external event may be advantageous because of 
easier state re-initialisation (E-SE-S), and for a struc-
tural model change (SE-D) an implementation with an 
external event may be preferred (E-SE-D), because of 
much easier handling of the dynamic state change – and 
less necessity for index reduction. An efficient control 
of the sequence of models can be made by state charts, 
but also by a well-defined definitions and distinction of 
IF - and WHEN - constructs, like discussed in exten-
sions of Scilab/Scicos for Modelica models. 

 
5. STRUCTURAL FEATURES IN SIMULA-

TORS 
Structural dynamic system are up to now – 2008 – a 
challenge for simulators. In principle, model-compiling 
simulators must ‘emulate’ the dynamic structure in a 
maximal state space by switching between ‘active’ 
states, while interpreting simulators can switch between 
different models by means of a control model handling 
the structural changes. 

But there exist also mixed strategies. In the following, 
some simulators are discussed with respect to their features 
for structural dynamic systems. Mainly using the bench-
mark Constrained Pendulum, in detail features for state 
chart modelling (as convenient tool for control models) 
and features for hybrid decomposition are investigated: 

 
• Support of state chart modelling or of a similar 

construct, by means of textual or graphical 
constructs. 

• Decomposition of structural dynamic systems 
with dynamic features– features for external 
events. 

 
5.1. MATLAB / Simulink / Stateflow 
The mainly interpretative systems MATLAB / Simulink 
offer different approaches. First, MATLAB itself allows 
any kind of static and dynamic decomposition, but 
MATLAB is not a simulator, because the model equa-
tions have to be provided in a sorted manner. 

Second, MATLAB allows hybrid decomposition at 
MATLAB level with Simulink models. There, from 
MATLAB level, different Simulink models are called 
conditionally, and in Simulink, a state event is deter-

mined by the hit-crossing block (terminating the simula-
tion). For control, in MATLAB only IF – THEN con-
structs are available. Table 3 – MATLAB control 
model, and Figure 10 – graphical Simulink model, show 
a hybrid decomposition of this type for the Constrained 
Pendulum. 

 
Table 3: MATLAB Control Model for Constrained 
Pendulum with External Events Switching between 
Long and Short Pendulum 
 

  if ((phi_p-phi0)*phi_p<0 | 
               (phi0==phi_p & phi_p*v>0)) 
     dphi0=v/ls; 
     sim('pendulum_short',[t(length(t)),10]); 
     v=dphi(length(dphi))*ls; 
  else 
     dphi0=v/l; 
     sim('pendulum_long',[t(length(t)),10]); 
     v=dphi(length(dphi))*l; 
  end 
 

 
MATLAB is a very powerful environment with 

various modules. Simulink is MATLAB’s simulation 
module for block-oriented dynamic models (directed 
signal graphs), which can be combined with Stateflow, 
MATLAB’s module for event-driven state changes de-
scribed by state chart. 
 

 
Figure 10: Simulink Model for Constrained Pendulum 
with External Event detected by Hit-Crossing Block. 

 
At Simulink level, Stateflow, Simulink’s state 

chart modelling tool, may control different submodels. 
These submodels may be dynamic models based on 
ODEs (DAEs), or static models describing discrete ac-
tions (events). Consequently, Stateflow can be used for 
implementation of the Constrained Pendulum, where 
the state charts control length and change of velocities 
in case of hit by triggering the static changes (Figure 
11). A solely Simulink implementation would make use 
of a triggered submodels describing the events by AND 
– and OR – blocks, or by a MATLAB function. 

Alternatively, for Constrained Pendulum Stateflow 
could control two different submodels representing long 
and short pendulum enabled and disabled by the state 
chart control. Internally Simulink generates a state space 
with ‘double’ dimension, because Simulink can only 
work with a maximal state space and does not allow hy-
brid decomposition. 
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Figure11: Simulink Model for Constrained Pendulum 
with External Event (Hit-Crossing Block, Stateflow) 

 
5.2. ACSL 
ACSL – Advanced Continuous Simulation Language – 
has been developed since more than 25 years. ACSL was 
strongly influenced by the CSSL standard. ACSL’ soft-
ware structure is a direct mapping of the structure in Fig-
ure 2. Implementations of the Constrained Pendulum 
have been shown in the previous sections Table 1, Table 
2), as example for modelling due to CSSL standard. 

A very interesting additional ACSL module is an 
extended environment called ACSLMath. ACSLMath 
was intended to have same features as MATLAB; avail-
able is only a subset, but powerful enough for an ex-
tended environment, which can be used for hybrid de-
composition of a structural dynamic model in almost 
the same way than MATLAB does (the MATLAB 
model in Table 3 can be used in ACSLMath, only by 
replacing the sim calls by run calls). 

 
5.3. MODELICA - Simulators 
In the 1990s, many attempts have been made to improve 
and to extend the CSSL structure, especially for the task 
of mathematical modelling. The basic problem was the 
state space description, which limited the construction of 
modular and flexible modelling libraries. Two develop-
ments helped to overcome this problem. On modelling 
level, the idea of physical modelling gave new input, and 
on implementation level, the object-oriented view helped 
to leave the constraints of input/output relations. 

In physical modelling, a typical procedure for mod-
elling is to cut a system into subsystems and to account 
for the behaviour at the interfaces. Balances of mass, en-
ergy and momentum and material equations model each 
subsystem. The complete model is obtained by combin-
ing the descriptions of the subsystems and the interfaces. 

This approach requires a modelling paradigm differ-
ent to classical input/output modelling. A model is con-
sidered as a constraint between system variables, which 

leads naturally to DAE descriptions. The approach is 
very convenient for building reusable model libraries. 

These ideas stimulated the development of the 
simulator Dymola, whose modelling frame has been ex-
tended to a general standardised modelling language 
called Modelica. Modelica is intended for modelling 
within many application domains such as electrical cir-
cuits, multibody systems, drive trains, hydraulics, 
thermo-dynamical systems, and chemical processes etc. It 
supports several modelling formalisms: ordinary differ-
ential equations, differential-algebraic equations, bond 
graphs, finite state automata, and Petri nets etc. Modelica 
serves as a standard format so that models arising in dif-
ferent domains can be exchanged between tools and users. 

Up to now – similar to VHDL-AMS – some simu-
lation systems understand Modelica (2008; generic – 
new simulator with Modelica modelling, extension - 
Modelica modelling interface for existing simulator): 

 
• Dymola from Dynasim (generic),  
• MathModelica from MathCore Engineering 

(generic) 
• SimulationX from ISI (generic/extension) 
• Scilab/Scicos (extension) 
• MapleSim (extension, announced) 
• Open Modelica - since 2004 the University of 

Lyngby develops an provides an open Mode-
lica simulation environment (generic), 

• Mosilab - Fraunhofer Gesellschaft develops a 
generic Modelica simulator, which supports 
dynamic variable structures (generic) 

• Dymola / Modelica blocks in Simulink 
 
As Modelica also incorporates graphical model ele-

ments, the user may choose between textual modelling, 
graphical modelling, and modelling using elements from 
an application library. Furthermore, graphical and textual 
modelling may be mixed in various kinds. The minimal 
modelling environment is a text editor; a comfortable en-
vironment offers a graphical modelling editor. 

The Constrained Pendulum example can be formu-
lated in Modelica textually as a physical law for angular 
acceleration. The event with parameter change is put 
into an algorithm section, defining and scheduling the 
parameter event SE-P (Table 4). As instead of angular 
velocity, the tangential velocity is used as state variable, 
the second state event SE-S ‘vanishes’. 

 
Table 4: Textual Modelica Model for Constrained Pen-
dulum 
 
   equation /*pendulum*/ 
     v = length*der(phi); 
     vdot = der(v); 
     mass*vdot/length + mass*g*sin(phi) 
     +damping*v = 0; 
   algorithm 
    if (phi<=phipin) then length:=ls; end if; 
    if (phi>phipin) then length:=l1; end if; 
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But Modelica allows also combining textual and 
graphical modelling. For the Constrained Pendulum ex-
ample, the basic physical dynamics could be modelled 
graphically with joint and mass elements, and the event 
of length change is described in an algorithm section, 
with variables interfacing to the predefined variables in 
the graphical model part (Figure 12). 
 

 

 

algorithm 
if (revolute1.phi 
     <= phipin then 
    revolute1.length:=ls; 
end if;  
if (revolute1.phi 
     < phipin then 
    revolute1.length:=ll; 
end if; 
  

Figure 12: Mixed Graphical and Textual Modelica 
Model for Constrained Pendulum 

 
5.3.1. Dymola 
Dymola was the first Modelica simulator. Dymola, in-
troduced by F. E. Cellier as a-causal modelling lan-
guage, and developed to a simulator by H. Elmquist, 
can be called the mother of Modelica. Dymola clearly 
can understand the Modelica models given in Table 4 
and Figure 12. Dymola offers also a Modelica – com-
patible state chart library, which allows to model com-
plex conditions (internally translated into IF – THEN – 
ELSE or WHEN constructs). Figure 14 shows an im-
plementation of the Constrained Pendulum using this 
library. 

 
5.3.2. Mosilab 
Since 2004, Fraunhofer Gesellschaft Dresden develops a 
generic simulator Mosilab, which also initiates an exten-
sion to Modelica: multiple models controlled by state 
automata, coupled in serial and in parallel. Furthermore, 
Mosilab puts emphasis on co-simulation and simulator 
coupling, whereby for interfacing the same constructs are 
used than for hybrid decomposition. Mosilab is a generic 
Modelica simulator. 
 

 
Figure 13: Graphical Dymola Model for Constrained 
Pendulum with Internal Events Managed by Elements 
of Dymola’s State Chart Library 

 

Mosilab implements extended state chart modelling, 
which may be translated directly due to Modelica stan-
dard into equivalent IF – THEN constructs, or which can 
control different models and model executions. At state 
chart level, state events of type SE-D control the switch-
ing between different models and service the events (E-
SE-D). State events affecting a state variable (SE-S type) 
can be modelled at this external level (E-SE-S type), or 
also as classic internal event (I-SE-S). Mosilab translates 
each model separately, and generates a main simulation 
program out of state charts, controlling the call of the 
precompiled models and passing data between the mod-
els, so that the software model of Mosilab follows the 
structure in Figure 8. The constructs for the state charts 
are modifications of state chart modelling in AnyLogic. 

Mosilab allows very different approaches for mod-
elling and simulation tasks, to be discussed with the 
Constrained Pendulum example. Three different model-
ling approaches reflect the distinction between internal 
and external events as discussed before. 

 
Mosilab Standard Modelica Model. In a standard Mode-
lica approach, the Constrained Pendulum is defined in the 
MOSILAB equation layer as implicit law; the state event, 
which appears every time when the rope of the pendulum 
hits or ‘leaves’ the pin, is modelled in an algorithm 
section with if (or when) – conditions (Table 7). 

 
Table 5: Mosilab Model for Constrained Pendulum – 
Standard Modelica Approach - Internal Events (I-SE-P) 

 

 equation /*pendulum*/ 
  v = l1*der(phi); vdot = der(v); 
  mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
 algorithm 
  if (phi<=phipin) then length:=ls; end if; 
  if (phi>phipin) then length:=l1; end if; 
 end 
 

 
Mosilab I-SE-P Model with State Charts. MOSI-
LAB’s state chart approach models discrete elements by 
state charts, which may be used instead of IF - or 
WHEN - clauses, with much higher flexibility and read-
ability in case of complex conditions. There, Boolean 
variables define the status of the system and are man-
aged by the state chart.  

 
Table 6: Mosilab Model for Constrained Pendulum – 
State Chart Model with Internal Events (I-SE-P) 

 

event Boolean lengthen(start=false), 
 shorten(start = false); 
equation 
lengthen=(phi>phipin); shorten=(phi<=phipin); 
equation /*pendulum*/ 
 v = l1*der(phi); vdot = der(v); 
 mass*vdot/l1 + mass*g*sin(phi)+damping*v= 0; 
statechart 
 state LengthSwitch extends State; 
 State Short,Long,Initial(isInitial=true); 
transition Initial -> Long end transition; 
transition Long -> Short event shorten action 
 length := ls; 
end transition; 
….; 
 

 
Table 6 shows a Mosilab implementation of the 

Constrained Pendulum: state charts initialise the system 
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and manage switching between long and short pendu-
lum, by changing the length appropriately. 

 
Mosilab E-SE-P Model. Mosilab’s state chart construct 
is not only a good alternative to IF - or WHEN - clauses 
within one model, it offers also the possibility to switch 
between structural different models. This very powerful 
feature allows any kind of hybrid composition of mod-
els with different state spaces and of different type 
(from ODEs to PDEs, etc.). Table 7 shows a Mosilab 
implementation of the Constrained Pendulum making 
use of two different pendulum models, controlled exter-
nally by a state chart. 

Here, the system is decomposed into two different 
models, Short pendulum model, and Long pendulum 
model, controlled by a state chart. The model descrip-
tion (Table 7) defines now first the two pendulum mod-
els, and then the event as before. The state chart creates 
first instances of both pendulum models during the ini-
tial state (new). The transitions organise the switching 
between the pendulums (remove, add). The connect 
statements are used for mapping local to global state. 

 
Table 7: Mosilab Model for Constrained Pendulum – 
State Chart Switching between Different Pendulums 
Models by External Events (E-SE-P) 
 

 

model Long 
equation 
 mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
end Long; 
model Short 
equation 
 mass*vdot/ls + mass*g*sin(phi)+damping*v = 0; 
end Short; 
event discrete Boolean lengthen(start=true), 
equation 
 lengthen = 
 (phi>phipin);shorten=(phi<=phipin); 
statechart 
state ChangePendulum extends State; 
 State Short,Long,startState(isInitial=true); 
transition startState -> Long action 
 L:=new Long(); K:=new Short(); add(L); 
end transition; 
transition Long->Short event shorten action 
 disconnect ….; remove(L); add(K); connect … 
end transition; 
transition Short -> Long event lengthen 
 action;disconnect…;remove(K);add(L);connect …… 
end transition; end ChangePendulum; 

 
 

5.4. AnyLogic – Hybrid State Chart Simulator 
AnyLogic – already discussed in section 3) is based on 
hybrid automata. Consequently, hybrid decomposition 
and control by external events is possible. In AnyLogic, 
various implementations for the Constrained Pendulum 
are possible. A classical implementation is given in Fig-
ure 5, following classical textual ODE modelling, 
whereby instead of IF – THEN clauses a state chart is 
used for switching (I-SE-P, I-SE-S). 

AnyLogic E-SE-P Model with State Charts. A hy-
brid decomposed model makes use of two different mod-
els, defined in substate / submodel Short and Long. –
part of a state chart switching between these submodels. 
The events defined at the arcs stop the actual model, set 
new initials and start the alternative model (Figure 13). 

AnyLogic E-SE-P Model with Parallel Models.  
AnyLogic works interpretatively, after each external 
event state equations are tracked and sorted anew for 
the new state space. This makes it possible, to decom-
pose model not only in serial, but also in parallel (Fig-
ure 14). 
 

  
 

Equations Constrained Pendulum 
parameter … 
end Constrained pendulum 
Equations Short 
d(alpha)/dt = omega 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls 
Change eventLong; 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ls/ll; stop 
end Short 
Equations Long 
d(alpha)/dt = omega 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll 
Change eventShort 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ll/ls; stop 
end Long 
  

 
Figure 13: AnyLogic Model for Constrained Pendulum, 
Hybrid Model Decomposition with two Pendulum 
Models and External Events 
 

  
 

Equations Constrained Pendulum 
d(alpha)/dt = omega 
x = l*sin(alpha); y = l*cos(alpha) 
end Constrained pendulum 
Equations Short 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ls 
Change eventLong 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ls/ll; stop 
end Short 
Equations Long 
d(omega)/dt =(-g*sin(alpha)-mu*omega)/ll 
Change eventShort 
(alpha>=alphaN)||(alpha<=alphaN) 
Action; omega=omega*ll/ls; stop 
end Long 
  

 
Figure 14: AnyLogic Model for Constrained Pendulum, 
Hybrid Model Decomposition with Two Models for 
Angular Velocity and Overall Model for Angle 
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