
DISTRIBUTED DISCRETE SIMULATION ON THE WEB

Aman Atri(a), Felix Breitenecker(b), Nicole Nagele(b), Shabnam Tauböck(c)

(a)(b)(c)(d)Vienna University of Technology, Austria

(a)aman.atri@tuwien.ac.at, (b)felix.breitenecker@tuwien.ac.at, (c)nicole.nagele@tuwien.ac.at
(d)shabnam.tauboeck@tuwien.ac.at

ABSTRACT
With the vast development of internet technologies web
based simulators have come to an extent where flexible
loosely coupled components communicate in a
distributed way. We are introducing a software
architecture where the simulation environment is not
limited to browser or applet specific restrictions but
using the web as a transport layer. Furthermore this
architecture permits us to separate the location of the
data collection, the computational part and the
visualisation modules. For a more transparent
communication between distributed simulators a
generic higher level semantics is able to pass
information and data on top of a lower-level networking
protocol. The idea is to design a system where modules
can be deployed and interchanged without redesigning
the whole simulator.

Keywords: web based simulation, service oriented
simulation architecture, asynchronous communication,
dynamic distributed code generation

1. INTRODUCTION
The rising facilities of internet based applications have
brought a lot of new paradigms in terms of simulation
software. The current trend of simulation frameworks
and tools is to get rid of providing only locally
restricted simulation environments and to seek for
appropriate communication technology for interacting
in heterogeneous systems.

Simulation tools can be used within given
protocols like HTTP. The current development of web
based technologies is leading the World Wide Web to a
new era where internet is not only serving the purpose
of displaying information in a browser but to interact
and exchange information and data. The idea is not to
re-invent new communication algorithms but to use
existing transfer protocols and to build higher-level
architectures which can provide a much more complex
and powerful semantics. This paper deals with web
based modelling strategies, communication between
client and server applications and network solutions for
building higher-level simulation environments for larger
scalability (Atri 2007, Breitenecker 2006).

The rapid development of the World Wide Web
has made it possible that data can now be transferred

without constraints concerning target platforms or
location of systems.

Distributed simulation on the web requires data
exchange from remote components. Thus there will be a
detailed view on certain software architectures that are
suitable for these scenarios. Complications, problems
that do occur in modelling and designing simulations
scenarios are also introduced.

Figure 1: Message passing in transparent networks

2. HETEROGENEOUS COMMUNICATION
Distributed computation demands that our models are
spread across the network and they share an internal
communication channel to update themselves. Figure 1
shows a loosely coupled framework of a message
passing layer which provides an abstraction regarding
the dependency towards the actual programming and
simulation language. Thus the actual target platform
gets independent if we use a globally known and open
communication standard like XML (Lechler 99). Now
that most of the components do not necessarily share a
common physical environment, unified arrangements

392

must be made so that these components can broadcast
their behaviour and presence to other subsystems.
Depending on the actual modelling and experiment,
web based simulation systems do not only work on
broadcasting patterns but can also benefit from
subscribing to certain services which are required by the
simulation algorithm. This allows the whole system to
provide the ability for remote computing within the
given context.

2.1. Web based visualization
Due to the behaviour of classical stateless protocols like
HTTP data transfer is restricted in direction,
chronological order and as a negative side effect it
produces a traffic overhead creating potential falsified
discrete triggering data. This might result in latency
effects in visualization on the client side. There are
higher-level approaches of web programming
frameworks to implement visualisation trough:

• Dynamical code generation with asynchronous
data delivery from the server

• A statically pre-compiled graphical application
which can directly access the service and
might be able to overtake some portions of the
computing unit

The first approach is implemented in Web 2.0 fashion
using XML mapping between clients and server. Ajax
(Asynchronous JavaScript and XML) emulates the
characteristics of a stateless protocol. In case of
required data update, the application is able to receive
the new visualisation information in background
without interrupting the actual simulation process.

The corresponding source code can be generated
via the web application on the server side. On the other
hand a predefined simulation and visualisation engine is
preferred if the data representation is not manipulated
from the distributed environment but can be computed
on a local system. In the last years this practice has been
put using Java Applets embedded in a browser but now
it has become more comfortable to develop programs
which use native graphical widgets of the operation
system and still the application is platform independent.
Java Webstart (JWS) simulation applications offer a fast
way to synchronize and interact with the simulation
service and download the models from the net
dynamically (Page and Kreutzer 2005).

The interactive web based simulation enables the
user to enter parameters or modify them using the
browser. Usually if the application is not running only
on the client side the browser sends this parameter to
the web server using the HTTP protocol. The request is
matched with the unique session of the user and the
session values are updated with the latest parameters.
The simulation web application is sends the result to the
browser and the page is reloaded. Because of this
latency during the HTTP requests the visualisation
cannot run fluently. Ajax technology is a work around
the avoid networking overhead. During the simulation

process the data is not changed entirely. The static
components which are displayed for documentation
purposes remain always the same and only the meta-
info graphical part is computed dynamically. For
example if the simulation visualisation is represented as
a graphical chart where the drawn function is changing
its values in certain time intervals and the browser
refreshes the page at every new query. All the
information which never change like the websites
layout style sheet, the cookies etc. will be resent over
the network causing a falsified query time stamp
because the browser will take its own time to reformat
and redisplay the whole page.

If the components of the graphical chart are using
Ajax JavaScript then the web application will only
receive an XML formatted query where the variables
which are necessary for repainting the graph are sent
and recomputed without sending the whole HTTP
request new. This communication is transported
asynchronously and the user has not the responsibility
to update and refresh his browser window. The
document exists during the entire user session and is
only modified within the permitted context. In
combination with hyperlinks parts of the visualization
can be hidden without reformatting and reading the
style sheet commands. The value of the hyperlinks can
also be changed dynamically and so they get a semantic
quality. Dispatching Ajax queries does not require
special browser plugins or extra ordinary configuration.
Any modern web browser with enabled JavaScript is
capable to deal with asynchronous XML
communication. The web application which is
computing the simulation results is of course aware of
its Ajax capacity. In visualisation where the size of
pending data is not known (the simulation time is
known but the total amount of computed data might be
unpredictable) Ajax helps the simulator to avoid
unnecessary traffic overhead.

2.2. Architectures for discrete Simulation
Building simulation networks where unpredictable
number of components work together or may drop out
implies to design an architecture which implements the
following criteria:

• The client side should be simple and contain
only a few classes to decrease overhead traffic

• Discrete events triggered remotely have to be
recognized and verified in case of data is lost
or falsified during data transfer

• Fault tolerance mechanisms have to grant the
exchangeability of components in case of loss
of connectivity. The simulation engine has to
be notified when some remote modules are not
reachable

Event oriented systems interact not trough a stream of
information and data but with synchronized events and
require an architecture which is mostly suitable if we

393

use the web as a global computation platform. The main
focus is not only to optimize single algorithms but the
whole system. Event oriented systems don’t interact
trough a stream of information and data but with
synchronized events and require an architecture which
is mostly suitable if we use the web as a global
computation platform for a frictionless integrity of all
storage and computing units (Bass and Clements and ,
Kazman 1998).

Distributed simulation refers to a system where the
components do not only reside on a single system. The
communication is done over an internet protocol
between the applications. A fault tolerant distributed
application is a system where a single component might
be out of order but not implicating a shutdown of the
whole system. While the retrieval of the faulty
component seems to be more or less easy, the actual
difficulties rise when we have to look for an appropriate
substitution.

2.3. Service-Oriented Simulation
When we talk of web based access to simulation
resources we find a lot of end-to-end point
implementations where the data is passed over an
HTML site of a browser to a CGI script on a server and
the computation is done either on the server and sent
back to the browser of the client system or we get an
inline plugin such as an applet or a flash animation.
(Page and Lechler and Classen 2000) The limitation of
a duplex client-server architecture is that most of the
data might be hidden and we don't have the permission
to access them directly. This is were services-oriented
architecture comes into practice during a bidirectional
message passing when both nodes have to behave not
only as a server but also as a client. One implementation
of a service-oriented architecture (SOA) is called web
services which use an existing networking protocol like
HTTP(s). The semantic layer is represented as a XML
specification where important information like the
names of the classes and methods which are likely to be
executed remotely and the parameters and the return
values are transferred. In discrete event oriented
simulation a sequential concatenation is strategy to
implement a distributed waiting queue area (Dustdar
and Gall and Hauswirth 2003).

Thus such a simulator works on service-oriented
pipes. That means, that every web service offers its
functionality to another one. The output of a transaction
can then be used as an input for another web service and
so on. In case of failure it is very easy to diagnose
which chain link is out of order and can be replaced by
simply switching to another web service node and
redirecting the stream.

Figure 2: Transaction of a model over SOAP

One big advantage of this concept is the possibility

that entities can be handled without depending on a
specific programming language. The WSDL
specification which provides information about the
classes and the interfaces is adopted in most of object
oriented languages and frameworks (Gyimesi 2005,
Booth et. al. 2004). Especially in discrete simulation we
can distinguish the state of a model by its embedded
variables and their values. Web services can now
provide a manipulation of these variables and
programmatic computation without even knowing in
which actual language they have been originally
configured.

2.4. Sequential and Parallel Piping
Some processes during a discrete simulation
computation may require merge and branching of the
current model. In that case a web service oriented queue
can split the model into several subsets of variables and
pass these subsets to different sub-services.

A sequential pipe can branch out to a parallel pipe.
That does not imply that the actual calculation is
performed as a parallel process but more like a splitted
workflow action where the order of the output is
irrelevant. If such a service requires some variables
from another set, but due to security restrictions the
direct access is not granted, then the demanding web
service can request a fetch task from the web service
which is managing the referring data set. An end-point
SOAP station which merges the model together and
releases it to the next module is globally accessible.

394

Figure 3: Task divided Simulation Web Services

For any module outside of this constellation the

whole system seemed to be a black box. The waiting
queue which entered the system had been split and
passed on to several different host systems. The policy
by which the data is distributed is depending on the
current task of the discrete simulation. Such a policy
could be driven by access permission of secondary data
source which is essential for the computation or the
positive side effect of efficient load balancing.

2.5. Multiple persistence of discrete models
In discrete event oriented simulation some tasks are
likely to avoid temporal latencies because of quick read
and write operations. In many cases the actual state of
the model has to be available to all stakeholders in the
network. This condition leads to a symbiosis where the
following criteria have to be met:

• Every client gets an update of the state of all
entities at any time requested.

• Any manipulation of the state of a model has
to be transactional. That means every client has
to be notified that an update has been
committed. If a client does not respond
positively than either the transaction has to be
withdrawn or the corresponding client has to
be listed as non-active.

• Every entity which is accessible to all clients
has at least one copy of itself in the system.

2.6. Models in a tupel space
Discrete event oriented simulation works on the
communication and message passing between the
entities and their sinks and sources. In large scale
networks this message passing could get in a bottleneck
situation if the whole repository is centralized or the
network traffic is unbalanced and some clients might
experience latency effects. Furthermore if a centralized
repository loses its network connection the whole
simulation execution will get stuck. An appropriate
mapped out persistence strategy is a so called tupel
space as shown in Figure 4.

Figure 4: Multiple persistence in a unified space

Somehow in certain work steps the number of read and
write operations cannot be predicted. The idea is to
unify the memory of all stakeholders to a so called
global unified tupel space (TS). Within this space the
models are accessible to all memory-providing hosts
and are replicated. This means that each model is
handled as a unique object in comprehensive higher
level memory architecture but actually the tupel space
service provides the opportunity that in case of failure
of certain parts of the network, the object and data will
not be lost and other tupel service nodes will take over
the data. Besides that a change of the state of a discrete
model (e.g. a modification of the model parameters)
will be passed on to every replicated copy in a
synchronized fashion.

The programming paradigm of this higher lever
architecture was introduced by Dr. David Gelernter at
the Yale University as coordination language named
Linda. Afterwards a Java based approach was
implemented by Sun called Java Spaces. A Java Space
service network does not offer a querying language as
relational or object oriented database. In discrete
simulation the selection of each model is conducted by
rules which are based on discrete stochastic events or
external temporal depending influences. The main focus
of a tupel space is the correct identification of the
objects for successful retrieval and transactional
synchronisation. The lookup methods for models in

395

space deliver two types of results: find the exact match
or just forget it. A unified memory is quite
comfortable for discrete event oriented models using
cellular automata (CA) as their state change navigator
from the programming point of view because
modifications of the current state affecting the whole
CA are automatically replicated and updated.

The disadvantage of using Java Spaces is that data
transfer within the space itself and with the client is
done using Java objects. But building a multi-tier
architecture as shown in Figure 4 enables language
independent access by inserting a middleware layer
which reallocates interfaces like web services or
hibernation mapping to external clients. Thus the tupel
space can be accessed by any database client, web
service client or even directly with an application
written in Java like a web based applet or Java Webstart
application.

2.7. Publishing and subscription vs. parametric

selection
While tupel spaces favour the idea of distributed object
storage without interfering with the semantic layer an
alternative approach is to allow an external managing
software module to allow publishing and subscribing
(P/S) to certain objects which represent the state of the
model.

Thus we can couple the tupel space storage with
external business logic. The concept of P/S is
comparable to a subscription system like a newsletter
service. The broking system broadcasts its models
according to its category. For instance if the discrete
simulation is going to compute a distributed waiting
queue, a P/S broking system could mange different
queues within a total different simulation context. A
client could subscribe to a certain queue claiming for
notification of only specific types of entities loaded.
This can be compared with the waiting queue at an
airport. After the passenger enters the airport he will be
redirected to the terminal to submit his luggage. This is
would resemble our distributed queue. A subscription
request is expressed by an airline only for their own
passengers. Although the middleware (the waiting hall
in front of the check-in counters) is managing all
passengers of all airlines the counter of a categorized
airline can then trigger a notification when a passenger
travelling with the corresponding company delivers his
luggage.

In object-oriented simulation over a network this
pattern is very useful because the P/S broker can handle
any arbitrary number of clients. Subscribers gain a
profit because they don’t have to take care of filtering
the search results. They trust their own broker manager
who is responsible for the correct selection of the
models with the following properties:

• A global queue is storing the events
• Publishers register themselves at the global

queue

• Publishers create new events if the state of the
model changes

• Subscribers register themselves and describe
those events they want to be informed about

• A broker manager who is hired by the
subscriber observes the queue and the stored
events

• In case the state of a model has been changed
due to an event caused by the publisher the
broker sends a message to all subscribed
clients using either the push or pull method

• Pull model: the subscriber receives a
notification that data has been changed. The
subscription client is now responsible to fetch
an update of the model

• Push model: the client does not only get the
notification but also the whole data bundle.

In event oriented simulation with lots of models states
and large objects the pull method reduces the network
traffic overhead because the client can filter the content
and update only parts of the model which are required
for the next simulation process.

2.8. Persistence and Transformation of objects
Time consuming simulation with lot of input and output
data require sophisticated persistence of the state of the
models. The architectures discussed previously have
introduced the exchange of information on different
host systems but not the storage of those data models. In
terms of large scale discrete simulations in an object
oriented programming pattern the state of a discrete
model is described by the values of its parameters
methods and local and global variables. As a persistent
storage platform an object oriented database would be
the most appropriate solution. Many systems still do not
support object oriented database persistence and store
their information in relational databases because:

• Legacy software components would require

the whole application to be rewritten
• Performance of relational databases are more

efficient in terms of data mining and complex
queries

Nevertheless dynamic models where the cardinality of
their parameters can increase or decrease during
simulation runtime, the object oriented database
(OODB) can still recognize and verify these changes, as
for the parameter of the model is stored as a complete
serialized object. In a relational scheme this is not
possible directly because of the static behaviour of the
tables and their column definitions.

Hibernation technology plays a great middleware
role when old database driven software meets new
scalable pure object oriented design pattern. The layer
of transforming an object into serialized data (which
could be stored on a file system) is interrupted with a
transformation of the objects encapsulated data into an

396

XML declaration of the variables and their visibility
properties. Thus the object is transformed into a
plaintext readable form where the semantic labels can
be reinterpreted. This means that any database driven
simulation library can store and read directly from the
relational database while an object oriented client can
transform (hibernate) the model into an XML form and
convert it to SQL statements or into objects. Figure 5
shows the workflow of the hibernation process:

1. The simulator has been provided with a model

description.
2. The simulator (or the single component if the

simulation is distributed on a network) wants
to gain access to data to feed the model.

3. The simulator forwards the model description
to the hibernation middleware which has
access to a relational database.

4. The hibernation server converts the request
into SQL statements and executes them.

5. The result is converted into an object for the
simulation client and sent back for further
operations.

Thus the information that the data was actually stored in
a relational scheme can be hidden and the simulator
regards the object locally created instance.

Figure 5: Dynamic mapping of model entities

3. CONCLUSION
We have shown that a composition of different
architectural designs can build a highly scalable
network for distributed simulation. Software
architectures for discrete simulation are not merely
focusing on parallel computation but also asynchronous
exchange of the models and state modification. Higher
level architectures can hide the actual machine
representation of the model and operate only on the
semantic value of the objects. Network transparent
protocols can hide the complexity of the data transfer.
For the simulator the actual location of the object is

transparent and the models are treated as they would
reside on the local system and the local runtime.

REFERENCES
Page, B., Kreutzer, W., 2005. The Java Simulation

Handbook. Simulating Discrete Event Systems
with UML and Java. Aachen:Shaker.

Page, B., Lechler T., Claassen S., 2000.
Objektorientierte Simulation in Java mit dem
Framework DESMO-J Java. Norderstedt:Books
on Demand GmbH.

ARGE Simulation News, ARGESIM Comparisons on
 Simulation Technique and Tools. TU-Wien.

Available from:
 http://www.argesim.org/comparisons [accessed 27

April 2008].
Atri, A., 2007. Visualisierung verteilter diskreter

Simulationen im Web. Thesis (master). Vienna
University of Technology.

Breitenecker, F., 2006. Software for Modelling and
Simulation - History, Developments Trends and
Challenges. Conference on Simulation and
Visualization 2006, pp. 7-20. March 2-3
Magdeburg (Magdeburg, Germany).

 Gyimesi, M., 2005. Simulation Service Providing unter
Verwendung von Web Service Technologie. Thesis
(PhD). Technische Universität Wien.

Booth D., Haas, H., McCabe, F., Newcomer E.,
Champion, I.M., Ferris, C., Orchard, D., 2004.
Web services architecture. Technical report W3C
– World Wide Web Consortium. Available from:
http://www.w3.org/TR/ws-arch/ [accessed 27
April 2008]

Dustdar, S., Gall, H., Hauswirth M., 2003. Software-
Architekturen für Verteilte Systeme. Berlin:
Springer.

Lechler T., 1999. Entwurf und Implementierung eines
Frameworks für diskrete Simulatoren in Java.
Thesis (master), Universität Hamburg.

Bass L., Clements P., Kazman R., 1998. Software
Architecture in Practice. Boston:Addison Wesley.

AUTHORS BIOGRAPHY
Aman Atri studied Software and Information
Engineering at the Vienna University of Technology.
His bachelor thesis analyses automated proofs for
model checking in temporal logic. After his bachelors
program he pursued with the master course Software
Engineering and Internet Computing. His master thesis
deals with discrete simulation and visualisation schemes
for the web. This work has been dilated in his PhD
thesis where he is analysing and developing service
oriented simulation frameworks and interoperable
connectivity of different simulators. He is working as an
assistant at the Vienna University of Technology
(Institute for Analysis and Scientific Computing).

397

