
SENSOR NETWORK BASED CONFLICT RESOLUTION IN AUTONOMOUS
MULTIAGENT SYSTEMS

Witold Jacak, (a) Karin Pröll (b)

(a) Department of Software Engineering
Upper Austria University of Applied Sciences

Hagenberg, Softwarepark 11, Austria

(b) Department of Bioinformatics
Upper Austria University of Applied Sciences

Hagenberg, Softwarepark 11, Austria

(a) Witold.Jacak@fh-hagenberg.at,(b) Karin.Proell@fh-hagenberg.at

ABSTRACT

The design of intelligent and sensor-based autonomous
agents learning by themselves to perform complex real-
world tasks is a still-open challenge for artificial and
computational intelligence. In this paper a concept of a
framework for an autonomous robotic agent is
presented. The structure of an intelligent robotic agent
consists of two independent subsystems: the action and
motion planning system and the action and motion
reactive control system with integrated conflict
resolution methods. The action planning system uses an
aggregated world model storing knowledge about all
static and dynamic objects in the surrounding
environment. The action controller solves space
conflicts in a reactive manner making use of
information from local sensors and a distributed sensor
network. Each dynamic object registered from sensor
network field is inserted into the world model as a new
obstacle in 2,5D form. Based on the updated world
model a conflictfree robot motion is calculated in a one
step motion planning cycle.

Keywords: autonomous robotic agent, sensor-based
conflict resolution

1. INTRODUCTION
The design of intelligent and sensor-based autonomous
systems (agent type) that learn by themselves to
perform complex real-world tasks is a still-open
challenge for the fields of system and control theory,
robotics and artificial and computational intelligence.

In this paper we present the concept of a
framework for an autonomous robotic agent that is
capable of showing both local sensor-based reactive
behavior and global action planning based on external
sensor network. Past experience has shown that neither
purely reactive nor purely machine learning-based
approaches suffice to meet the requirements imposed by
real-world environments.

In multi-agent robotic systems, one is primarily
interested in the behavior and interactions of a group of
agents and a dynamic surrounded world, based on the
models of the agents themselves and environment
stimuli. With every perceptual input, one associates a
certain action that is expressed in the form of rules or
procedures that calculate the reaction of the agent.
Reactive systems have no internal history or long term
plans, but calculate or choose their next action based
solely upon the current perceptual situation.

On the other hand, machine learning-based models
are motivated by the representation of the system's
knowledge. The adaptation of symbolic AI techniques
has led to the introduction of believes and intentions
into the reasoning processes of the system. Such models
permit to use more powerful and more general methods
than reactive models; this, however, makes them
inadequate for many real-time applications where a
dynamic change in the environment occurs.

Usually an agent has only partial information about
the world state obtained from own perception system
(sensors system). Machine learning aims to overcome
the limitations such as knowledge bottleneck,
engineering and tractability bottleneck, by enabling an
agent to collect its knowledge on-the-fly, through real-
world experimentation. Processing, storing and using
information obtained during several task executions is
called lifelong learning. For this reason it is necessary to
extend the reactive control system of sensor-based
global preplanning system by omitting the knowledge
bottleneck in classical machine learning approach.

2. CONFLICT RESOLUTION SYSTEM FOR

ROBOTIC AGENT
In our concept, the structure of an intelligent robotic
agent consists of two independent subsystems: the
action and motion planning system and the action and
motion reactive control system with integrated conflict
resolution method (Jacak, Proell, and Dreiseitl 2001,
Jacak and Proell 2007). The action planning system
uses an aggregated world model storing knowledge

39

about all conflicts which occurred in the past. Conflicts
occur when a collision between a robotic agent and an
unknown dynamical object or another agent in work
space is possible. The action controller is able to solve
the conflict situation (space conflict for autonomous
robotic agent) in a reactive manner. The general conflict
resolution part of the agent makes use of knowledge not
only from sensors mounted on active agent (local sensor
network) but also from distributed global sensor
network (see Figure 1). A sensor network is a collection
of sensor nodes deployed in an adhoc fashion in the
work space.

Figure 1: Structure of sensor-based conflict resolution
system

Being battery powered and deployed in remote areas
they have limited energy resource and hence limited
lifetime. Other constraints include limited memory,
processing power, and band-width. The accuracy of
information is location dependent. Due to these
limitations data aggregation is an important
consideration for sensor networks. The idea is to
combine the data coming from different sources and
reroute it further, after eliminating redundancy,
minimizing number of transmissions and thus saving
energy.

Sensors will be used for inventory maintenance
and unknown object recognition and motion tracking.
The agent requests a monitoring of some segment of
space in which the next parts of motion are supposed to
take place from the global sensor network. If the global
sensor network identifies unknown objects in these
segments then this information can be used by the
agent’s safety system to preplan a reaction prior to
recognition of these objects by the local perception
units. This can help to avoid possible conflict situations
in advance.

3. SENSOR NETWORK BASED ONE STEP

MOTION PLANNING SYSTEM

3.1. Static and Dynamic World Model
The knowledge represented here is the geometrical
model of the robotic agent environment. Many different
methods can be used for geometrical representation of
the agent service space. One of them is the triangle
approximation another is cubic approximation.
In a model with triangle approximation, the points in
the triangle net (lying on service space border) are

coupled in triangle walls. The walls represent the data
objects of the world model.

The other model describes the service space of the
robot manipulator as cubic approximation. The service
space of robotic agent can be discretized in the form of
the cubic raster (voxels). The number of voxels depends
of the accuracy of approximation. If the voxel is
occupied by an obstacle then it obtains the value 1 of
the space occupancy function.

The level of fullness of knowledge leads to two
different methods of resolving of conflict situation. The
both models are convenient to represent geometrical
environment of known objects in agent workspace. The
model is used for collision-freeness testing between
agents and surrounding world. We can say that the
position of an agent is collision free if it does not collide
with any static or dynamic obstacle in its workspace. To
test such conditions we should have full knowledge
about the surrounding static and dynamic world, that
means that the geometrical model of agent’s
environment should be completely known. To obtain
fast and fully computerized methods for collision
detection, we use additional geometric representation of
each object on the scene.

We introduce the ellipsoidal representation of 3D
objects, which uses ellipsoids for filling the volume.
The ellipsoidal representation of an object is convenient
to test collision freeness of agent positions. The 3D
models of objects represent the static part of agent’s
world model. To construct the model of unknown
objects, which penetrate the agent’s environment, it is
necessary to continuously modify the geometrical
representation. The dynamic part of model is modified
based on sensor data coming from wireless sensors
network.

3.2. Sensor Network
A sensor network is composed of a large number of tiny
autonomous devices, called sensor nodes. Each sensor
node has four basic components: a sensing unit, a
processing unit, a radio unit, and a power unit. Since a
sensor node has limited sensing and computational
capabilities and can communicate only within short
distances. The nodes are deployed densely and
coordinate amongst themselves to achieve common
information (Karl and Willig 2005). Some examples of
sensor network applications are as follows:

• Intrusion detection and tracking: Sensors are

deployed along the border to detect, classify,
and track intruding objects (Dousse,
Tavoularis, and Thiran, 2006).

• Environmental monitoring: Specialized sensor
nodes that are able to detect changes in
environment (Tzung-Shi Chen, Yi-Shiang
Chang, Hua-Wen Tsai, Chih-Ping Chu 2007).

These sensor networks applications differ significantly.
However, the tasks performed by the sensors are
similar: sensing the environment, processing the

40

information, and sending information to the base
station(s). A node in a sensor network has essentially
three different tasks (Al-Karaki and Kamal 2004):

1. Sensing: detecting changes of environment;
2. Communicating: forwarding information, acting as

an intermediate relay in a path;
3. Computing: data aggregation, processing, and

compression.

Routing techniques are needed to send data between
sensor nodes and the base station. Several routing
protocols are proposed for sensor networks. These
protocols can be divided into the following categories:
data-centric protocols, hierarchical protocols, location
based protocols, and some QoS-aware protocols
(Dousse, Tavoularis, and Thiran, 2006).

For monitoring the surrounding environment of the
robotic agent we propose a sensor network based on a
virtual grid representation of the monitored area and for
data delivery a combination of event driven and query-
driven data delivery protocol between sensor network
and a mobile sink component (AS) of the robotic agent
is used (Tzung-Shi Chen, Yi-Shiang Chang, Hua-Wen
Tsai, and Chih-Ping Chu 2007). The mobility of AS
results from movements of the robotic agent.

Virtual Grid Structure of Sensor Network: The
monitored area is divided into virtual grids. We notate
G(x,y) as the grid coordinates, where x is grid x-
coordinate and y is grid y-coordinate in Cartesian space.
Let R be the transmission distance of the radio signal
and d be the side length of grid. After sensors have been
deployed, a node is selected to act as grid head. The
grid head’s task is to record information about events
and disseminate it to other nodes for collaborative
signal and information processing. At first, each node
obtains neighboring information by start message.
Utilizing this information, a node that is closest to the
center of the grid is selected as head. If a head has not
enough resources, one of other nodes in the same grid
will be selected to replace it.

We assume that the side length of grids to
guarantee that the grid heads can communicate with
neighboring grids directly. Here, we also assume that
the communication range of node is able to
communicate with the neighboring grids. The
relationship between d and R is predefined.

The grids are grouped in sub-networks in
hierarchical way. Each sub-network obtains one head
selected from the set of grid’s heads. The sub-network
head collects the messages from grid’s heads within the
sub-network.

The mobile agent sink (AS) stores the topology of
the virtual grid and uses this information to perform the
queries to the sensor network.

The task of AS is to find the virtual cell of grid
where the intrusion of a new dynamic object is
registered. An AS expects to obtain the event
information instantly when such event occurred. An

event usually happens unexpected. Therefore, a sensor
has to signal an event after it was detected. This sensor
is called source node. The source node propagates a
register packet to all grid heads. The format of register
packet is <P_type, Src_id, Src_G(x,y), hc, event_type,
time_to_expire>, where P_type is packet type, Src_id is
the identifier of the source node, Src_G(x,y) is the
source’s grid location, and hc is the hop count. When
heads receive this packet, they store the register packet
in their register table and route it to the sub-network
head. This information is kept within a certain period of
time (time_to_expire). If a head does not receive any
further register packets and time_to_expire is elapsed, it
removes the information from the register table.

The information of an event is distributed to the
grid heads and summarized to the sub-network head in
the following way: The grid heads store the x,y
positions of active sensor nodes (an event has been
signaled) whereas in the subnet-work heads only grid
numbers with active sensor nodes are registered (active
grids).

For the next query the AS maintains a list
containing all sub-network heads surrounding the next
segment of its motion path and all sub-networks with
active grids.

AS can now decide to obtain detailed information
about all active sensor nodes by querying the grid heads
of all active grids or summarized information about all
active grids by querying only the sub-network heads.
For reconstructing the geometric model of the intruding
object both - detailed or summarized - information can
be used. Using detailed information a more accurate
shape of the base of the intruding object can be
deduced. The use of summarized information leads to a
very approximate representation based on shapes of
active grids. (see Figure 2)

Figure 2: Use of summarized or detailed information
from virtual grid for reconstructing shape of intruding

object

By maintaining a dynamic list of sub-network

heads for querying, a general broadcast to all sub-
network heads in the virtual grid can be avoided. The
possibility to query either sub-network heads or grid
heads further reduces transmission activities in the
network.

World Model Updating: The path planner of robotic
agent sends a query to AS to check if any grid cell in

41

sensor network has an active signal of a new object
intrusion. AS uses the sub-network heads and grid
heads and hierarchical protocol to collect the G(x,y)
position of grids to be active. The G(x,y) and side length
d will be used to approximation of object shape and
volume to be intruded in the work space of robotic
agent. The 3D geometrical model of an intruding object
is constructed in a 2,5D representation of the shape
registered by sensors (see Figure 3).

Active grid
heads

New object
2.5D Model

Subnetwork 1

Subnetwork head

Subnetwork 2

Figure 3: Virtual Grid Structure of Sensor Network and

2,5 D representation of intruding object

3.3. Global Motion Planner
Agent Model: The most suitable model of hardware
component of robotic agent is a discrete dynamic
system. One of the ways to construct such model of
robot's kinematics is based on an arbitrary discretization
of angle increments of the agent mechanical joints
(Jacak 1999). Using the fact that all the angles can
change only by a defined increment, we define the input
set U of the model as: U= ×{ui|i=1,..,n} where ui ={-
δq,0,δq} is the set of possible (admissible) directions of
changes of the i-th joint angle. Having defined the set
U, it is possible to describe the changes of successive
configurations of the agent's link as discrete linear
system with the state transition function as:

q(k+1)=q(k) + Λ u(k) (1)

In order to make it possible to check the configuration
with respect to obstacles locations, it is necessary to
create an output function q. A skeleton of agent´s arm
represents the agent position in the base frame. The i-th
joint's position in Cartesian base space (skeleton point),
assuming that all the joint variables q are known, is
described by the Denavit-Hartenberg matrix. Checking
for the collision-freeness of the agent configuration
(skeleton) can be reduced to the "brokenline ellipsoid"
(skeleton ellipsoid) intersection detection problem,
which has an easy analytical solution. The complete
formal explanation of the FSM model of agent
kinematics, is presented in (Jacak 1999, Proell 2002).

Motion Planner: For the robotic agent we can define
the problem of achievement the goal position as the
problem of reachability of the final state set from the
agent's current state (current position).

In order to solve this problem we apply graph
searching in the state transition graph. The process of
applying the transition function to a current state we
term expanding the graph node. Expanding current state
qc, successors of qc etc. ad infinitum, makes explicit the

graph that implicitly is defined by current state and
transition function. The way of expanding the graph
will depend on the form of the cost function using to
evaluate each node. As the evaluation function we can
use the sum of the cost function c(qc,q) and a cost
estimate function h(q,qf), for example the rectilinear
distance between agent position and terminal position
qf.

Using the standard A* procedure we can find the
state trajectory (if exists) q*=(qc, q(2),..,q(k),.., qf) from
current state to final state qf which includes only
feasible states. In order to solve the path-planning
problem we apply the graph searching procedure to the
agent's state transition graph. The development of the
search graph will start from the node (configuration) qc,
by the action for all possible inputs from the set U.
Thus, it becomes essential to quickly check for the non-
repeatability of the nodes generated, and their
feasibility. A configuration q is said to be feasible if it
does not collide with any object in the surrounding
world.

3.4. One step motion path planning
The continuously adapted world model is used to test
the collision freeness. Each dynamic object registered
from sensor network field is inserted into the world
model as a new obstacle in 2,5D form.

The task of the motion planning and execution
component is to plan the collision free configuration of
the robot's manipulator based on information coming
from the world model from knowledge base. To realize
this task, the on line motion planner calculates the
changes of robot configuration to avoid the obstacle in
the best possible way. This knowledge is represented as
geometrical model of work scene and mathematical
model of agent's actor direct and inverse kinematics.

The one step action planner of the agent generates
the new movement in following steps:
step 1: The motion planner requests the current world
model from AS of sensors network,
step 2: Based on the positions of obstacles motion
planner recognizes its own current position and
establishes the parameters for motion search algorithm,
such as type of evaluation function.
step 3: Action planner starts the stategraph searching
algorithm A* from its current position with previously
established evaluation. The searching stops if the goal
position is reached or if the OPEN set is empty or if the
OPEN set has more as N elements. To calculate the
successors set planner uses the FSM - model of the
agent.
step 4: The temporary path of motion is calculated and
the new configuration of motion is chosen and realized.
The motion planner started step 1 again.

3.5. Example
The following example (Figure 4) shows the trajectories
of the robotic agent at times T1, T2, …T8 avoiding the
cylindrical object crossing its initial path. At each point
of time Ti the motion planner uses the information about

42

the obstacle’s current position from the sensor network
for recalculating a new collision free motion as a
temporary path from current to final position. When the
object leaves, the robotic agent does not return to its
initial trajectory at time T1 but takes the shortest way
from the current to the final position.

Object
trajectory

Agent
trajectory

Figure 4: One step motion planning to avoid collision
with cylindrical object

4. REACTIVE LOCAL CONTROLLER OF

MOTION

4.1. Neural network based agent model
The agent model contains the knowledge about
construction, properties and structure of a hardware
agent. Here, knowledge of the kinematical properties of
the robotic agent is provided in order to decide about
collision avoidance mode and avoidance path.
Therefore, the forward and the inverse kinematics
models of the robot should be known.

The planning of the new configuration is based on
the computation of robot kinematics and is
computationally expensive. Therefore it is attractive to
apply a neural network model of robot kinematics,
stored in the knowledge base of the agent, which
automatically generates safe configurations of the robot.
This model uses a multilayer feedforward neural
network with hidden units having sinusoidal activation
functions (Jacak 1999).

Each element of manipulator direct kinematics can
be represented in the form of Π i=1

n ai sc(qi) where
sc(qi) is either sin qi, cos qi or 1. Then, after
simplification, the forward kinematics of a robot
manipulator with n revolute joints can be described by
the weighted sum of sinusoidal functions: ti

s(q)=Σ sin(
wj

Tq) and s=x,y,z where ti
s(q) defines the output of

neural network representing s-th Cartesian variable of
i-th joint position. Based on the neural direct kinematics
model it is easy to generate the inverse kinematics
(Jacak 1999, Proell 2002). The plant model of the robot
kinematics is presented in Figure 5.

Cos

Cos

Cos

Cos

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ

Σ
Sin

Sin

Sin

Sin
Σ

Σ

Σ

Σ

Σ

Σ ϕi

Σ ϕi
Σ

Σ

Forward kinematic NN

 Jacobian NN

Range constraints NN

q

C
on

fig
ur

at
io

n

Figure 5: Neural network model of the robot kinematics

4.2. Safe local motion planning and execution
To calculate the safe configuration, the planner uses
information from the local sensors of danger
recognition component and combines it in the inverse
kinematics computation. We use the method, which
requires only the computation of direct kinematics
based on neural processing. Such the solution of
inverse kinematics problem can be obtained by
attaching a feedback network around a forward to form
a recurrent loop, such that, given a desired Cartesian
pose P of a feedforward network, the feedback network
iteratively generates joint angle correction terms to
move the output of forward network toward the given
pose. This coupled neural network is the neural
implementation of a gradient method of position error
minimization.

Let en(q) denote the position-error between the
current position of effector-end in current configuration
q, calculated by forward kinematics and a desired next
Cartesian position on the executed path. The obstacle
avoidance can be achieved by introducing the additional
errors for each joint, i.e. the errors between virtual
points pi and the joints positions, where the virtual
points represent the wished position of the i-th link that
achieves collision-avoidance. The virtual points are
placed on the opposite side of the joint with respect to
the obstacle. The virtual points are calculated based on
signals from local sensor system, mounted directly on
the robotic agent. To solve the inverse kinematics
problem in our particular case we transform it to the
optimisation problem. Note, that the solution of the
inverse kinematics problem uses only direct kinematics
models, and Jacobian. Both models can be implemented
as neural networks (Jacak 1999).

43

Pfinal

en en en-1

en-2

ei

di

dn-2

dn-1

dn path

virtual
 point

Abandon
Detour

old configuration
new configuration

skeleton

d2

d1

e2

e1

Figure 5: virtual points and reactive motion control

For calculation of virtual points, we propose the

installation of ultrasonic sensors and a sensitive skin on
each manipulator link and then use a neural network to
estimate the proximity of the objects with the link of
question. The resulting distances are compared with the
world model of the robot environment to recognize the
new obstacle within the radius of the security zone ρ.

When a manipulator is equipped with many
sensors and these sensors are mounted on different
manipulator links the problem arises how to fuse
sensors readings to obtain useful information. The
results of the fusion action are vectors d=(di|i=1,..,n),
representing the minimal distances to objects in robot
environment for each joint of the manipulator. The
distances are used to calculate the virtual points for
online inverse kinematics method. When the obstacle
penetrates the local security zone the virtual points are
calculated and additional errors are introduced into
inverse kinematics. The reactive motion controller
calculates the new position of agent which minimizes
additional errors i.e. maximizes the distances d to
obstacles. (see Figure 5)

CONCLUSION
Using global sensor network unknown objects in a
robotic agent’s workspace can be identified prior to
recognition of these objects by the local perception
units. This information is stored in the world model of
the robotic agent which is continuously updated. The
aggregated world model is used by the agent’s safety
system to preplan a reaction to avoid possible conflict
situations. Especially for mobile robots with a
manipulator fixed on top of a mobile base unit the
combination of a global sensor network and local
perception units improves their mobility.

REFERENCES

Al-Karaki, J.N. Kamal, A.E. 2004. Routing

techniques in wireless sensor networks: a survey.
Wireless Communications, IEEE Volume 11, Issue
6:6- 28.

Dousse, O., Tavoularis, C., and Thiran, P. 2006. Delay
of intrusion detection in wireless sensor networks.
Proceedings of the 7th ACM international
Symposium on Mobile ad hoc Networking and
Computing, 155-165. May 22 - 25, 2006, Florence,
Italy.

Jacak W., Proell K., 2007. Heuristic Approach to
Conflict Problem Solving in an Intelligent
Multiagent System Heuristic Approach to Conflict
Problem Solving in an Intelligent Multiagent
System. In: Computer Aided Systems Theory —
EUROCAST 2007, Lecture Notes in Computer
Science. Heidelberg:Springer, 772-779.

Jacak W., Proell K., Dreiseitl S., 2001. Conflict
Management in Intelligent Robotic System based
on FSM Approach. In: Computer Aided Systems
Theory — EUROCAST 2001, Lecture Notes in
Computer Science. Heidelberg:Springer, 359-386.

Jacak, W., 1999. Intelligent Robotic Systems: Design,
Planning and Control. New York, Boston, USA:
Kluwer Academic/Plenum Publishers.

Karl H, Willig A., 2005. Protocols and Architectures
for Wireless Sensor Networks. USA: Wiley.

Proell K., 2002. Intelligent Multi-Agent Robotic
Systems: Contract and Conflict Management. PhD
Thesis, Johannes Kepler University Linz /Austria.

Tzung-Shi Chen, Yi-Shiang Chang, Hua-Wen Tsai,
Chih-Ping Chu, 2007. Data Aggregation for Range
Query in Wireless Sensor Networks. Journal of
Information Science and Engineering Volume 23,
Number 4:1103-1121.

44

