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ABSTRACT 
 
The design of intelligent and sensor-based autonomous 
agents learning by themselves to perform complex real-
world tasks is a still-open challenge for artificial and 
computational intelligence. In this paper a concept of a 
framework for an autonomous robotic agent is 
presented. The structure of an intelligent robotic agent 
consists of two independent subsystems: the action and 
motion planning system and the action and motion 
reactive control system with integrated conflict 
resolution methods. The action planning system uses an  
aggregated world model storing knowledge about all 
static and dynamic objects in the surrounding 
environment. The action controller solves space 
conflicts in a reactive manner making use of 
information from local sensors and a distributed sensor 
network. Each dynamic object registered from sensor 
network field is inserted into the world model as a new 
obstacle in 2,5D form. Based on the updated world 
model a conflictfree robot motion is calculated in a one 
step motion planning cycle.  

 
Keywords: autonomous robotic agent, sensor-based 
conflict resolution  

 
1. INTRODUCTION 
The design of intelligent and sensor-based autonomous 
systems (agent type) that learn by themselves to 
perform complex real-world tasks is a still-open 
challenge for the fields of system and control theory, 
robotics and artificial and computational intelligence. 

In this paper we present the concept of a 
framework for an autonomous robotic agent that is 
capable of showing both local sensor-based reactive 
behavior and global action planning based on external 
sensor network.  Past experience has shown that neither 
purely reactive nor purely machine learning-based 
approaches suffice to meet the requirements imposed by 
real-world environments. 

In multi-agent robotic systems, one is primarily 
interested in the behavior and interactions of a group of 
agents and a dynamic surrounded world, based on the 
models of the agents themselves and environment 
stimuli. With every perceptual input, one associates a 
certain action that is expressed in the form of rules or 
procedures that calculate the reaction of the agent. 
Reactive systems have no internal history or long term 
plans, but calculate or choose their next action based 
solely upon the current perceptual situation. 

On the other hand, machine learning-based models 
are motivated by the representation of the system's 
knowledge. The adaptation of symbolic AI techniques 
has led to the introduction of believes and intentions 
into the reasoning processes of the system. Such models 
permit to use more powerful and more general methods 
than reactive models; this, however, makes them 
inadequate for many real-time applications where a 
dynamic change in the environment occurs. 

Usually an agent has only partial information about 
the world state obtained from own perception system 
(sensors system). Machine learning aims to overcome 
the limitations such as knowledge bottleneck, 
engineering and tractability bottleneck, by enabling an 
agent to collect its knowledge on-the-fly, through real-
world experimentation. Processing, storing and using 
information obtained during several task executions is 
called lifelong learning. For this reason it is necessary to 
extend the reactive control system of sensor-based 
global preplanning system by omitting the knowledge 
bottleneck in classical machine learning approach. 

 
2. CONFLICT RESOLUTION SYSTEM FOR 

ROBOTIC AGENT 
In our concept, the structure of an intelligent robotic 
agent consists of two independent subsystems: the 
action and motion planning system and the action and 
motion reactive control system with integrated conflict 
resolution method (Jacak, Proell, and Dreiseitl 2001, 
Jacak and Proell 2007). The action planning system 
uses an  aggregated world model storing knowledge 
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about all conflicts which occurred in the past. Conflicts 
occur when a collision between a robotic agent and an 
unknown dynamical object or another agent in work 
space is possible. The action controller is able to solve 
the conflict situation (space conflict for autonomous 
robotic agent) in a reactive manner. The general conflict 
resolution part of the agent makes use of knowledge not 
only from sensors mounted on active agent (local sensor 
network) but also from distributed global sensor 
network (see Figure 1). A sensor network is a collection 
of sensor nodes deployed in an adhoc fashion in the 
work space. 

 

Figure 1: Structure of sensor-based conflict resolution 
system 

 
Being battery powered and deployed in remote areas 
they have limited energy resource and hence limited 
lifetime. Other constraints include limited memory, 
processing power, and band-width. The accuracy of 
information is location dependent. Due to these 
limitations data aggregation is an important 
consideration for sensor networks. The idea is to 
combine the data coming from different sources and 
reroute it further, after eliminating redundancy, 
minimizing number of transmissions and thus saving 
energy. 

Sensors will be used for inventory maintenance 
and unknown object recognition and motion tracking. 
The agent requests a monitoring of some segment of 
space in which the next parts of motion are supposed to 
take place from the global sensor network. If the global 
sensor network identifies unknown objects in these 
segments then this information can be used by the 
agent’s safety system to preplan a reaction prior to 
recognition of these objects by the local perception 
units. This can help to avoid possible conflict situations 
in advance. 

 
3. SENSOR NETWORK BASED ONE STEP 

MOTION PLANNING SYSTEM 
 

3.1. Static and Dynamic World Model 
The knowledge represented here is the geometrical 
model of the robotic agent environment. Many different 
methods can be used for geometrical representation of 
the agent service space. One of them is the triangle 
approximation another is cubic approximation. 
In a model with triangle approximation, the points in 
the triangle net (lying on service space border) are 

coupled in triangle walls. The walls represent the data 
objects of the world model.  

The other model describes the service space of the 
robot manipulator as cubic approximation. The service 
space of robotic agent can be discretized in the form of 
the cubic raster (voxels). The number of voxels depends 
of the accuracy of approximation. If the voxel is 
occupied by an obstacle then it obtains the value 1 of 
the space occupancy function. 

The level of fullness of knowledge leads to two 
different methods of resolving of conflict situation. The 
both models are convenient to represent geometrical 
environment of known objects in agent workspace. The 
model is used for collision-freeness testing between 
agents and surrounding world. We can say that the 
position of an agent is collision free if it does not collide 
with any static or dynamic obstacle in its workspace. To 
test such conditions we should have full knowledge 
about the surrounding static and dynamic world, that 
means that the geometrical model of agent’s 
environment should be completely known. To obtain 
fast and fully computerized methods for collision 
detection, we use additional geometric representation of 
each object on the scene.  

We introduce the ellipsoidal representation of 3D 
objects, which uses ellipsoids for filling the volume. 
The ellipsoidal representation of an object is convenient 
to test collision freeness of agent positions. The 3D 
models of objects represent the static part of agent’s 
world model. To construct the model of unknown 
objects, which penetrate the agent’s environment, it is 
necessary to continuously modify the geometrical 
representation. The dynamic part of model is modified 
based on sensor data coming from wireless sensors 
network. 

 
3.2. Sensor Network 
A sensor network is composed of a large number of tiny 
autonomous devices, called sensor nodes. Each sensor 
node has four basic components: a sensing unit, a 
processing unit, a radio unit, and a power unit. Since a 
sensor node has limited sensing and computational 
capabilities and can communicate only within short 
distances. The nodes are deployed densely and 
coordinate amongst themselves to achieve common 
information (Karl and Willig 2005). Some examples of 
sensor network applications are as follows:  

 
• Intrusion detection and tracking: Sensors are 

deployed along the border to detect, classify, 
and track intruding objects (Dousse, 
Tavoularis, and Thiran, 2006).  

• Environmental monitoring: Specialized sensor 
nodes that are able to detect changes in 
environment (Tzung-Shi Chen, Yi-Shiang 
Chang, Hua-Wen Tsai, Chih-Ping Chu  2007). 

 
These sensor networks applications differ significantly. 
However, the tasks performed by the sensors are 
similar: sensing the environment, processing the 
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information, and sending information to the base 
station(s). A node in a sensor network has essentially 
three different tasks (Al-Karaki and Kamal  2004): 

  
1. Sensing: detecting changes of environment;  
2. Communicating: forwarding information, acting as 

an intermediate relay in a path;  
3. Computing: data aggregation, processing, and 

compression. 
 
Routing techniques are needed to send data between 
sensor nodes and the base station. Several routing 
protocols are proposed for sensor networks. These 
protocols can be divided into the following categories: 
data-centric protocols, hierarchical protocols, location 
based protocols, and some QoS-aware protocols 
(Dousse, Tavoularis, and Thiran, 2006).  

For monitoring the surrounding environment of the 
robotic agent we propose a sensor network based on a 
virtual grid representation of the monitored area and for 
data delivery a combination of event driven and query-
driven data delivery protocol between sensor network 
and a mobile sink component (AS) of the robotic agent 
is used (Tzung-Shi Chen, Yi-Shiang Chang, Hua-Wen 
Tsai, and Chih-Ping Chu  2007). The mobility of AS 
results from movements of the robotic agent. 

 
Virtual Grid Structure of Sensor Network: The 
monitored area is divided into virtual grids. We notate 
G(x,y) as the grid coordinates, where x is grid x-
coordinate and y is grid y-coordinate in Cartesian space. 
Let R be the transmission distance of the radio signal 
and d be the side length of grid. After sensors have been 
deployed, a node is selected to act as grid head. The 
grid head’s task is to record information about events 
and disseminate it to other nodes for collaborative 
signal and information processing. At first, each node 
obtains neighboring information by start message. 
Utilizing this information, a node that is closest to the 
center of the grid is selected as head. If a head has not 
enough resources, one of other nodes in the same grid 
will be selected to replace it.  

We assume that the side length of grids to 
guarantee that the grid heads can communicate with 
neighboring grids directly. Here, we also assume that 
the communication range of node is able to 
communicate with the neighboring grids. The 
relationship between d and R is predefined.   

The grids are grouped in sub-networks in 
hierarchical way. Each sub-network obtains one head 
selected from the set of grid’s heads. The sub-network 
head collects the messages from grid’s heads within the 
sub-network.  

The mobile agent sink (AS) stores the topology of 
the virtual grid and uses this information to perform the 
queries to the sensor network.  

The task of AS is to find the virtual cell of grid 
where the intrusion of a new dynamic object is 
registered. An AS expects to obtain the event 
information instantly when such event occurred. An 

event usually happens unexpected. Therefore, a sensor 
has to signal an event after it was detected. This sensor 
is called source node. The source node propagates a 
register packet to all grid heads. The format of register 
packet is <P_type, Src_id, Src_G(x,y), hc, event_type, 
time_to_expire>, where P_type  is packet type, Src_id is 
the identifier of the source node, Src_G(x,y) is the 
source’s grid location, and  hc is the hop count. When 
heads receive this packet, they store the register packet 
in their register table and route it to the sub-network 
head. This information is kept within a certain period of 
time (time_to_expire). If a head does not receive any 
further register packets and time_to_expire is elapsed, it 
removes the information from the register table.  

The information of an event is distributed to the 
grid heads and summarized to the sub-network head in 
the following way: The grid heads store the x,y 
positions of active sensor nodes (an event has been 
signaled) whereas in the subnet-work heads only grid 
numbers with active sensor nodes are registered (active 
grids). 

For the next query the AS maintains a list 
containing all sub-network heads surrounding the next 
segment of its motion path and all sub-networks with 
active grids.  

AS can now decide to obtain detailed information 
about all active sensor nodes by querying the grid heads 
of all active grids or summarized information about all 
active grids by querying only the sub-network heads. 
For reconstructing the geometric model of the intruding 
object both - detailed or summarized - information can 
be used. Using detailed information a more accurate 
shape of the base of the intruding object can be 
deduced. The use of summarized information leads to a 
very approximate representation based on shapes of 
active grids. (see Figure 2) 

 
Figure 2:  Use of summarized or detailed information 
from virtual grid for reconstructing shape of intruding 

object 
 
By maintaining a dynamic list of sub-network 

heads for querying, a general broadcast to all sub-
network heads in the virtual grid can be avoided. The 
possibility to query either sub-network heads or grid 
heads further reduces transmission activities in the 
network.  

 
World Model Updating: The path planner of robotic 
agent sends a query to AS to check if any grid cell in 
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sensor network has an active signal of a new object 
intrusion. AS uses the sub-network heads and grid 
heads and hierarchical protocol to collect the G(x,y) 
position of grids to be active. The G(x,y) and side length 
d will be used to approximation of object shape and 
volume to be intruded in the work space of robotic 
agent. The 3D geometrical model of an intruding object 
is constructed in a 2,5D representation of the shape 
registered by sensors (see Figure 3).  

 

Active grid 
heads

New object
2.5D Model

Subnetwork 1

Subnetwork head

Subnetwork 2  
 
Figure 3: Virtual Grid Structure of Sensor Network and 

2,5 D representation of intruding object 
 
 

3.3. Global Motion Planner 
Agent Model: The most suitable model of hardware 
component of robotic agent is a discrete dynamic 
system. One of the ways to construct such model of 
robot's kinematics is based on an arbitrary discretization 
of angle increments of the agent mechanical joints 
(Jacak 1999). Using the fact that all the angles can 
change only by a defined increment, we define the input 
set U of the model as: U= ×{ui|i=1,..,n} where ui ={-
δq,0,δq} is the set of possible (admissible) directions of 
changes of the i-th joint angle. Having defined the set 
U, it is possible to describe the changes of successive 
configurations of the agent's link as discrete linear 
system with the state transition function as:   
 
q(k+1)=q(k) + Λ u(k)                                                  (1) 
 
In order to make it possible to check the configuration 
with respect to obstacles locations, it is necessary to 
create an output function q. A skeleton of agent´s arm 
represents the agent position in the base frame. The i-th 
joint's position in Cartesian base space (skeleton point), 
assuming that all the joint variables q are known, is 
described by the Denavit-Hartenberg matrix. Checking 
for the collision-freeness of the agent configuration 
(skeleton) can be reduced to the "brokenline ellipsoid" 
(skeleton ellipsoid) intersection detection problem, 
which has an easy analytical solution. The complete 
formal explanation of the FSM model of agent 
kinematics, is presented in (Jacak 1999, Proell 2002). 
 
Motion Planner: For the robotic agent we can define 
the problem of achievement the goal position as the 
problem of reachability of the final state set from the 
agent's current state (current position).  

In order to solve this problem we apply graph 
searching in the state transition graph. The process of 
applying the transition function to a current state we 
term expanding the graph node. Expanding current state 
qc, successors of qc etc. ad infinitum, makes explicit the 

graph that implicitly is defined by current state and 
transition function. The way of expanding the graph 
will depend on the form of the cost function using to 
evaluate each node. As the evaluation function we can 
use the sum of the cost function c(qc,q) and a cost 
estimate function h(q,qf), for example the rectilinear 
distance between agent position and terminal position 
qf.  

Using the standard A* procedure we can find the 
state trajectory (if exists) q*=(qc, q(2),..,q(k),.., qf) from 
current state to final state qf which includes only 
feasible states.  In order to solve the path-planning 
problem we apply the graph searching procedure to the 
agent's state transition graph. The development of the 
search graph will start from the node (configuration) qc, 
by the action for all possible inputs from the set U. 
Thus, it becomes essential to quickly check for the non-
repeatability of the nodes generated, and their 
feasibility. A configuration q is said to be feasible if it 
does not collide with any object in the surrounding 
world.  
 
3.4. One step motion path planning  
The continuously adapted world model is used to test 
the collision freeness. Each dynamic object registered 
from sensor network field is inserted into the world 
model as a new obstacle in 2,5D form.  

The task of the motion planning and execution 
component is to plan the collision free configuration of 
the robot's manipulator based on information coming 
from the world model from knowledge base. To realize 
this task, the on line motion planner calculates the 
changes of robot configuration to avoid the obstacle in 
the best possible way. This knowledge is represented as 
geometrical model of work scene and mathematical 
model of agent's actor direct and inverse kinematics. 

The one step action planner of the agent generates 
the new movement in following steps: 
step 1: The motion planner requests the current  world 
model from AS of sensors network,  
step 2: Based on the positions of obstacles motion 
planner recognizes its own  current position and 
establishes  the parameters for motion search algorithm, 
such as type of evaluation function. 
step 3: Action planner starts the stategraph searching 
algorithm A* from its current position with previously 
established evaluation. The searching stops if the goal 
position is reached or if the OPEN set is empty or if the 
OPEN set has more as N elements. To calculate the 
successors set planner uses the FSM - model of the 
agent. 
step 4: The temporary path of motion  is calculated and 
the new configuration of motion is chosen and realized. 
The motion planner started step 1 again. 
 
3.5. Example  
The following example (Figure 4) shows the trajectories 
of the robotic agent at times T1, T2, …T8 avoiding the 
cylindrical object crossing its initial path. At each point 
of time Ti the motion planner uses the information about 
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the obstacle’s current position from the sensor network 
for recalculating a new collision free motion as a 
temporary path from current to final position. When the 
object leaves, the robotic agent does not return to its 
initial trajectory at time T1 but takes the shortest way 
from the current to the final position. 
  
 

Object
trajectory

Agent
trajectory

Figure 4: One step motion planning to avoid collision 
with cylindrical object 

 
 
4. REACTIVE LOCAL CONTROLLER OF 

MOTION 
 

4.1. Neural network based agent model 
The agent model contains the knowledge about 
construction, properties and structure of a hardware 
agent. Here, knowledge of the kinematical properties of 
the robotic agent is provided in order to decide about 
collision avoidance mode and avoidance path. 
Therefore, the forward and the inverse kinematics 
models of the robot should be known.  

The planning of the new configuration is based on 
the computation of robot kinematics and is 
computationally expensive. Therefore it is attractive to 
apply a neural network model of robot kinematics, 
stored in the knowledge base of the agent, which 
automatically generates safe configurations of the robot. 
This model uses a multilayer feedforward neural 
network with hidden units having sinusoidal activation 
functions (Jacak 1999). 

Each element of manipulator direct kinematics can 
be represented in the form of Π i=1

n ai sc(qi)  where 
sc(qi) is either sin qi, cos qi or 1. Then, after 
simplification, the forward kinematics of a robot 
manipulator with n revolute joints can be described by 
the weighted sum of sinusoidal functions: ti

s(q)=Σ sin( 
wj

Tq) and s=x,y,z where  ti
s(q) defines the  output of 

neural network  representing s-th Cartesian variable of 
i-th joint position. Based on the neural direct kinematics 
model it is easy to generate the inverse kinematics 
(Jacak 1999, Proell 2002). The plant model of the robot 
kinematics is presented in Figure 5.  
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Figure 5: Neural network model of the robot kinematics  
 
4.2. Safe local motion planning and execution 
To calculate the safe configuration, the planner uses 
information from the local sensors of danger 
recognition component and combines it in the inverse 
kinematics computation. We use the method, which 
requires only the computation of direct kinematics 
based on neural processing.  Such the solution of 
inverse kinematics problem can be obtained by 
attaching a feedback network around a forward to form 
a recurrent loop, such that, given a desired Cartesian 
pose P of a feedforward network, the feedback network 
iteratively generates joint angle correction terms to 
move the output of forward network toward the given 
pose. This coupled neural network is the neural 
implementation of a gradient method of position error 
minimization. 

Let en(q) denote the position-error between the 
current position of effector-end in current configuration 
q, calculated by forward kinematics  and a desired next 
Cartesian position on the executed path. The obstacle 
avoidance can be achieved by introducing the additional 
errors for each joint, i.e. the errors between virtual 
points pi and the joints positions, where the virtual 
points represent the wished position of the i-th link that 
achieves collision-avoidance. The virtual points are 
placed on the opposite side of the joint with respect to 
the obstacle. The virtual points are calculated based on 
signals from local sensor system, mounted directly on 
the robotic agent. To solve the inverse kinematics 
problem in our particular case we transform it to the 
optimisation problem. Note, that the solution of the 
inverse kinematics problem uses only direct kinematics 
models, and Jacobian. Both models can be implemented 
as neural networks (Jacak 1999). 

43



Pfinal

en en en-1

en-2

ei

di

dn-2

dn-1

dn path

virtual
 point

Abandon
Detour

old configuration
new configuration

skeleton

d2

d1

e2

e1

 
Figure 5: virtual points and reactive motion control 
 
For calculation of virtual points, we propose the 

installation of ultrasonic sensors and a sensitive skin on 
each manipulator link and then use a neural network to 
estimate the proximity of the objects with the link of 
question. The resulting distances are compared with the 
world model of the robot environment to recognize the 
new obstacle within the radius of the security zone ρ.  

When a manipulator is equipped with many 
sensors and these sensors are mounted on different 
manipulator links the problem arises how to fuse 
sensors readings to obtain useful information. The 
results of the fusion action are vectors d=(di|i=1,..,n), 
representing the minimal distances to objects in robot 
environment for each joint  of the manipulator. The 
distances are used to calculate the virtual points for 
online inverse kinematics method. When the obstacle 
penetrates the local security zone the virtual points are 
calculated and additional errors are introduced into 
inverse kinematics. The reactive motion controller 
calculates the new position of agent which minimizes 
additional errors i.e. maximizes the distances d to 
obstacles. (see Figure 5) 

 
CONCLUSION 
Using global sensor network unknown objects in a 
robotic agent’s workspace can be identified prior to 
recognition of these objects by the local perception 
units. This information is stored in the world model of 
the robotic agent which is continuously updated. The 
aggregated world model is used by the agent’s safety 
system to preplan a reaction to avoid possible conflict 
situations. Especially for mobile robots with a 
manipulator fixed on top of a mobile base unit the 
combination of a global sensor network and local 
perception units improves their mobility.   
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