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ABSTRACT 
In applications of pattern recognition a set of objects - 
usually represented by feature vectors - is extracted 
from an image and needs to be classified as a whole set 
of objects, meaning that some properties of the set of 
objects are an aggregation of the single feature vectors – 
and the classification of the set of objects may depend 
on exactly these properties. If the number of objects, 
respectively the number of features, is not known or 
limited a priori standard classification algorithms such 
as support vector machines or linear classifiers cannot 
applied in a straightforward way due to the fixed size of 
the number of features in these methods. Therefore the 
set of object’s “structure” may not be implemented 
properly. 
In this paper we will discuss some issues of these 
problems and propose recurrent neural networks (RNN) 
as a promising method to use for such problems. 
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1. INTRODUCTION 
In many applications of image processing respectively 
pattern recognition, a set of objects - usually 
represented by feature vectors - is extracted from an 
image and needs to be classified. The classification 
decision can rest on properties represented by single 
feature vectors e.g. if the maximum ‘length’ of a feature 
vector exceeds a certain threshold. These problems are 
typically solved in an algorithmic way. 

Another type of classification problems deals with 
properties, constituted by a fixed number of feature 
vectors. Typical examples for these problems are e.g. 
signal processing, data mining problems. To tackle such 
problems, one typically uses classification algorithms 
like linear classifiers, support vector machines or 
feedforward neural networks. 

Things become more complicated, if the number of 
feature vectors is not known a priori. 

Typical examples are 
 
• Surface Inspection: A number of faults (= 

“objects”) on the surface is extracted and each 

one is represented by a feature vector 
containing e.g. it’s size, position, or shape. In 
order to achieve a proper classification e.g. 
good/bad, possible reasons for a “bad” 
decision may be the number of faults, their 
spatial distribution or other, even more 
complicated, aggregated properties. Therefore, 
the whole set of objects needs to be taken into 
consideration. 

• Object Recognition: Recognizing objects that 
are composed of several components - e.g. an 
object that consists of an unspecified number 
of rectangles (windows), some significant 
edges (the walls) that provide a frame for the 
windows and a roof on top of all the windows 
can be identified as a house.  

• Biomedical Imaging: The crystallization 
patterns of dried biological fluids, in particular 
native blood drops (clots) on a common 
medical slide, seem to contain a lot of 
information about diseases and other 
pathological disorders. Geometrical and color 
features are extracted out of scanned images 
from these clots, but only the accumulation of 
all these varying features of different regions 
of the blood spot decides, whether the patient 
has some pathological disorder. 

 
The common requirements of these classification 

tasks: 
  
• The number of objects in the set is different for 

each image. 
• Aggregated information from the whole set of 

objects is necessary. 
• The classifier has to be trainable, since the 

classification rules are not known beforehand. 
 
Since our main application is surface inspection we 
cannot guarantee that the low level procedures produce 
ordered results: 
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• The result of the classification has to be 
invariant up to the order in which the objects 
represented by single feature vectors are 
aggregated. 

 
Currently, there exist no mathematical structures 

that fulfill all of these properties to a high degree. In 
particular, the problem of trainable aggregation 
functions has not been investigated in great detail and 
most standard classification methods, such as linear 
classifiers, feedforward neural networks or support 
vector machines use a pre-specified size of feature 
vectors. 

In the current work, these problems are not 
completely solved. We built different scenarios with 
partially simplified problems and investigated them by 
applying existing methods like feedforward neural 
networks to these problems. Furthermore, recurrent 
neural networks as a well suited method are one 
proposition to tackle these problems. 

The paper is organized as follows. Section 2 
explains the used methods and introduces artificial 
neural networks, in particular recurrent neural networks. 

Section 3 provides details about the scenarios, the 
test data, mostly related to the application in pattern 
recognition. 

While section 4 presents some information about 
the experiments and results of our work we conclude 
with an outlook at future work in section 5. 

 
2. METHODS 
We will investigate classification methods that take a 
set of feature vectors 
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as input and provide a binary classification result {0,1}. 
The feature vectors ix  are supposed to be of the same 
dimension and to contain the same attributes, but there 
is no other relationship or structure in the data and the 
numbers of vectors n may vary for each image. 

A possible solution is to arrange the feature vectors 
the feature vectors in a single vector,  
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to fill it with zeros up to a pre-specified dimension 

maxnm ⋅  and to apply a standard classification method, 
such as linear classifiers, feedforward neural networks, 
support vector machines, or any other classification 
method. The maximal number nmax of feature vectors 
needs to be specified and the dimension of the 
combined vector is nmax times the number of features m. 
 
2.1. Linear Classifiers 
Linear classifiers provide a good basis for comparison 
of the results as they are fully understood with respect 
to their properties. They try to find a hyperplane in the 

feature space which separates the samples into two 
classes (Figure 1). 
 

 
Figure 1: Linear classifier with separating hyperplane 

 
The resulting classification problem is usually 
prohibitively big and requires training sets of very large 
size. Moreover, this trivial method does not consider the 
specific nature of the set of objects. 
 
2.2. Artificial Neural Networks 
A modeling method which is widely used is the 
classification artificial neural networks. The simplest 
type of artificial neural networks is a feedforward neural 
network. Equally structured neurons are arranged in 
layers which are connected by unidirectional 
connections. There is usually one input layer, one or 
more hidden layers and one output layer (Figure 2). In 
our application, classifying images as good or bad, only 
one output neuron is required to indicate the 
classification result. 
 

 
Figure 2: Feedforward neural network 

 

While feedforward neural networks are very successful 
in classification and are applied in different areas like 
speech recognition and signal processing they have 
some undesirably problems. On the one hand they act as 
a black box and the implemented functions do not really 
connect to the way humans think about the original 
problem. On the other hand the original data has to be 
encoded in a finite dimensional vector space with a 
prior known dimension which leads to a loss of 
structural information. 
 
2.3. Recurrent Neural Networks 
Recurrent neural networks use, unlike simple 
feedforward networks, recursive neurons to build 
feedback structures. These neurons may have 
connections to all other neurons, meaning that 
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connections in the opposite direction of the information 
flow will occur. This composition allows saving 
information on already given input data up to a certain 
degree and to learn regularities on structured data. Since 
the dynamic of recurrent neural networks are linked to 
the dynamics of finite automata, an interpretation of 
results via classical formalism is more likely than an 
interpretation of results of a feedforward neural network 
(Hammer 2000). 

Furthermore, neural networks of this type can deal 
with a variable number of input vectors and it is not 
necessary to adapt the network size according to the 
number of data objects to process. This may be a 
solution to one of the key problems of the classification 
task –the number of objects in the set is different for 
each problem and not known before. 

Assuming that networks with a recurrent structure 
require “no” limits on the number of feature vectors, 
they can be combined with some added feedforward 
network layers to generate the desired output. A typical 
recurrent neural network is shown in Figure 3. 
 

Figure 3: Simple recurrent network combined with 
feedforward neural network as classifier 

 
Recurrent neural networks have been widely 

investigated in the field of time series 
classification/prediction, e.g. (Connor, Martin and Atlas 
1994). Various structures have been proposed, e.g. 
Elman, Jordan, Wiliams-Zipser, recursive auto-
associative memory (Pollack 1990) and a number of 
training methods have been developed; the most 
common seems backpropagation through time (Werbos 
1990). 

 
2.3.1. Related Work 
Authors that dealt with the issue of classification of 
structures (Sperduti and Starita 1997; Frasconi, Gori 
and Sperduti 1998; Hammer 2000; Hammer 2001; 
Hammer 2002) propose to use different generalized 
recursive neurons to represent the structure of a graph. 
They relate their method to standard neural networks 
(for the classification of single patterns) and recurrent 
neural networks (for the classification of sequences). 

Recent literature adresses other related problems 
such as multi-instance learning (Ramon and De Raedt 
2000), long-short-term memory (Hochreiter and 
Schmidhuber 1997), classifying relational data (Uwents, 
and Blockeel 2005; Perlich and Provost 2003) and 

aggregation functional (Ovchinnikov and Dukhovny 
2002). 

 
3. SCENARIOS AND TEST DATA 
We developed different scenarios with various test data 
and tasks to solve. 

 
3.1. Comparison of different classifiers 
A total of 10 test datasets, each one comprising 20.000 
pictures with a different number of flaws and features 
per flaw but with a maximum of 24 features per picture 
was specified. 

The specified tasks to solve where defined as 
follows: 

 
3.1.1. Comp1 – Sum of a vector 
The feature vector is added up and rated as “bad” if the 
sum fails to exceed a certain threshold value. 

 
3.1.2. Comp2 - Areamax 
If the maximal value of the area of one flaw exceeds 
some arbitrary number, the picture is rated as “bad”. 
 
3.1.3. Comp3 - Areasum 
One feature of each flaw, which can for instance 
represent the area and is nonnegative, is added up for all 
feature vectors. The picture is rated as “bad” if the total 
area of flaws exceeds a certain threshold value. 

 
3.1.4. Comp4 – Number of flaws 
If the number of flaws per picture is greater than some 
fixed number, the picture is rated as “bad”. 
 
3.1.5. Comp5 – Minimal distance 
The minimal distance between any two flaws is 
determined, which demands high computing effort. If it 
lies beneath a certain threshold, the picture is rated as 
“bad”. 

 
3.1.6. Comp6 – Cluster formation 
A rather advanced classification task is to investigate 
the formation of clusters within the data points. In order 
to detect a cluster, the number of data points in the 
neighborhood of every data point was determined. 

 
3.1.7. Comp7 – Number of flaws in a specific region 
This criterion rates a picture as “bad” if the number of 
flaws in a certain region exceeds some arbitrary 
threshold value. 

The according parameters where chosen in a way, 
that approximately half of the pictures are rated as 
“good” respectively ”bad”. 
 
3.2. Evaluation of recurrent artificial networks 
In order to evaluate the performance of different 
network architectures and network sizes, we have 
generated a total of eight data sets with varying 
complexity. All but one data set require utilizing 
aggregated information of the flaws present in one 
image to solve the associated classification task. One 

x
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data set requiring no aggregate information has been 
added to enable the comparison of the combined 
aggregation / classification networks with standard 
classifiers. 

A subset of three so-called simple data sets aims at 
measuring a candidate network’s principal ability for 
information aggregation and has little immediate 
correspondence to practical applications. The five 
remaining data sets simulate classification tasks being 
typical for surface inspection. 

 
3.2.1. Simple Data Sets 
The structure of the feature data is identical for all three 
simple data sets. The data sets differ in terms of the 
rules used to generate the (good/bad) labels. The data 
sets contain 20.000 sets of real-valued 3-dimensional 
vectors. Each of the sets consists of a minimum of 3 and 
a maximum of 12 such vectors. The real-valued vector 
entries are randomly drawn from a uniform distribution 
in the interval [-0.5, 0.5]. Each vector is interpreted as a 
point in Euclidean 3-space.  

Based on these point sets different kinds of 
aggregated features are computed for each data set. 
Image labels are then assigned by applying a threshold 
to the respective aggregated feature. The thresholds 
have been chosen to yield an even split of good/bad 
labels on each of the generated data sets. 

 
• Simple 1: The aggregated feature used in the 

labeling rule is the mean value of the 
Euclidean norms in the set of feature vectors. 
Computing the mean value can be done 
incrementally and requires memory for the 
running mean value and counting the already 
processed entries. We consider this to be the 
base-line task for trainable feature aggregation. 

• Simple 2: The aggregated feature is the sum of 
the two largest vector norms in the set. Like in 
the Simple 1 data set this task can be 
performed in a single step but it requires 
memory to store the two largest vector norms. 

• Simple 3: The labeling rule in this data set is 
based on the minimum Euclidean distance 
between two points of the set corresponding to 
an image. Computing this rule is not possible 
in a single pass with constant memory. For 
classification of sets with arbitrary cardinality 
using finite memory the trainable aggregation 
function has to learn a heuristic leading to an 
approximate solution. However, since the 
cardinality of the vector sets in the test data is 
limited to 12, a finite network should be able to 
implement this kind of aggregation in an exact 
manner. 

 
3.2.2. Surface Inspection Data Sets 
Five data sets containing 20.000 images each have been 
generated. The images and the rules applied for labeling 
simulate typical tasks occurring in surface inspection 
applications. One bright spot within the image 

represents one object (potential fault) that is described 
by a feature vector. All of the objects in the image make 
up a set of faults that needs to be classified. Typical 
example images are displayed in Figure 4 and Figure 5. 
Both of them show preprocessed images from a surface 
inspection application. The background is removed and 
only relevant objects (potential faults) are presented in 
the image. The gray value corresponds to the degree of 
deviation from 'normal appearance' of the part of the 
image. 
 

 
Figure 4: images from a surface inspection application 
with more evenly distributed flaws and line of flaws in 
the lower half.  

 

 
Figure 5: images from a surface inspection application 
with flaws concentrated in the upper half of the image 
except a line-like structure from the upper left to the 
lower left. 

 
Both pictures show flaws of similar type and 

amount but a completely different distribution can be 
noticed. The flaws in Figure 1 are more evenly 
distributed, with some flaw clusters and some flaws 
apparently aligned. In contrast to that the flaws in 
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Figure 2 tend to remain in the upper half of the image 
and some of them build a nearly straight formation 
running from the upper left to the lower right. 

The different composition of flaws leads to 
different properties of each image, respectively the 
corresponding feature sets. 

The characteristic object features used to define the 
rules in the surface inspection data sets are: 

 
• Center coordinates 
• Area 
• Compactness 
• Maximum gray value 
• Circumference 
• Minimal and maximal extension 

 
Based on these features rules to label images as good or 
bad are built by combining multiple sub rules with a 
logical OR operation. The sub rules correspond to 
simple threshold operations on object features and more 
importantly, on aggregated features. An example sub 
rule very common to surface inspection tasks combines 
object size (represented by area) with deviation from 
normal color (represented by maximum gray value): 
An image is labeled bad if there is an object larger than 
55 pixels AND maximum gray value is above 25. 

All surface inspection data sets contain such sub 
rules based on object features only. Four surface 
inspection data sets additionally contain sub rules 
involving aggregate features, which should be learned 
by the aggregation part of our model. As already 
mentioned before, we have included one data set 
(Surface Inspection 1) not requiring aggregated 
information at all for correct classification. Below we 
describe the specific aggregated features used in sub 
rules of the data sets 2-5: 

 
• Surface Inspection 2: The used rules to label 

the images contain two sub rules involving an 
aggregate feature, specifically the object count. 
An image is labeled bad if there are more than 
7 faults OR if there are more than 5 faults in 
the right half of the image. 

• Surface Inspection 3: The rules used to label 
the images contain two sub rules involving 
aggregate features based on counting and 
clustering. A cluster is defined as a number of 
objects concentrated in a circular area. 
An image is labeled bad if there is a cluster of 
at least 4 objects within a 20 pixel radius OR if 
there are at least 3 clusters with 3 objects. 

• Surface Inspection 4: In this data set we  
have applied a sub rule based on object 
features to multiple objects, thus yielding a 
rule requiring aggregate features.

An image is labeled bad if there is an object 
larger than 10 pixels with maximum gray value 
above 150 AND there is another object larger 
than 15 pixels with maximum gray value above 
100. 

• Surface Inspection 5: We consider this data 
set to contain the most difficult learnable 
aggregation rule in all given test data  
sets. By some means, the aggregation function 
has to test for compliance of a number of 
objects with a geometrical model: 
An image is labeled bad if there are at least 6 
objects aligned on a line, with the distance 
between object centers being smaller than 70 
pixels and the orthogonal distance to the line 
being smaller than 15 pixels. 

 

4. EXPERIMENTS AND RESULTS 
Due to the known principal limitations of standard 
classification methods like linear classifiers and 
feedforward neural networks in the field of classifying 
sets of objects with a priori not known number of 
objects and the known advantages of recurrent neural 
networks, we investigated different problems to 
compare recurrent neural networks to the standard 
classification methods. We therefore developed the 
settings Comp1 to Comp7 (Section 3). 

 
4.1. Linear Classifier 
The tests with linear classifiers where obtained as a 
benchmark for tests with feedforward neural networks 
as well as with recurrent neural networks. Due to the 
specific method, linear classifiers use, we arranged all 
feature vectors in one vector. 
The percentage of falsely classified pictures is displayed 
in Table 1. 

Table 1: Percentage of falsely classified pictures by 
linear classifiers 

 
 
4.2. Feedforward neural networks 
The architecture was chosen according to the test data. 
We used a network with 24 input neurons, one hidden 
layer with 6 neurons and one output neuron. As a 
training method a backpropagation method was used. 

Results of classification are shown in Table 2.
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Table 2: Percentage of falsely classified pictures by 
feedforward neural networks 

 
 

4.3. Recurrent neural networks 
According to the structure of the networks, much 
smaller recurrent neural networks compared to the tests 
with feedforward neural networks have been used. 
Results are given in Table 3. 

 
Table 3: Percentage of falsely classified pictures by 
recurrent neural networks 

 
 
Since some tasks where known as linearly 

separable, the good performance of the linear classifier 
was expected. For these problems nearly as good results 
were obtained with the feedforward neural network but 
it outperformed the linear classifier in the more complex 
problems partially dramatically. 

The effort of the recurrent neural networks is 
twofold. On the one hand the results of classification are 
not that outstanding, especially for the linearly 
separable tasks. On the other hand, the effort in solving 
complex problems is comparable with results from the 
other methods, in particular if we consider the small 
number of neurons and therefore number of weights 
compared to the number of weights for feedforward 
neural networks. 

Since these test scenarios did not have nearly the 
number of possible features of real surface recognition 
problems, the structural limitations of feedforward 
neural networks will probably eliminate them as a 
possible solution for such problems 

  
5. OUTLOOK AND FUTURE WORK 
Even though recurrent neural networks seem to be a 
good method to solve classification problems of 
complex type, significant and thorough research has to 
be done. 

It is still unclear which training algorithm will give 
best results, as our backpropagation still has problems if 
the number of iterations is larger than 10. This poses the 
question of the best architecture in respect of the 
number of layers, neurons and iterations needed. The 
application of evolutionary computation methods like 

genetic algorithms and their combination with artificial 
neural networks gives a promising direction for future 
research.  

To get more insight in the behavior and properties 
of recurrent neural networks, scenarios Simple 1 – 
Simple 3 and Surface Inspection 1 – Surface Inspection 
5 will be investigated. 
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