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ABSTRACT 
A continuous time neural network of Hopfield type is 
considered. It is a W(inner) T(akes) A(ll) selector. Its 
inputs are capacitively coupled to model the parasitics 
or faults of overcrowded chip layers. A certain 
parameter setting allows the correct selection of the 
maximum element from an input list. As processing 
time is a performance criterium, we infer upper bounds 
of it, explicitly depending on circuit and list parameters. 
Our method consists of converting the system of 
nonlinear differential equations describing the circuit to 
a system of decoupled linear inequalities. 
 
Keywords: neural networks, winner-takes-all, Hopfield 
networks, parasitics, time evaluations. 
 

 
1. INTRODUCTION 
We consider a neural network of N cells with a 
complete interconnection of negative feedback type. We 
design it as a WTA machine, i.e. a mean of separating 
the largest signal from a list of constant and distinct 
signals. This is an up to date topic in time problems for 
neural networks of analog type (Wu 2001, Cao 2001, 
Zhang, Heng and Fu, 1999; Liang and Si 2001, Cho 
2005). It follows the pioneering papers regarding the 
computational Hopfield networks (Hopfield 1984, 
Hopfield and Tank 1985, Majani, Erlanson and Abu-
Mostafa 1989; Atkins 1992, Dranger and Priemer 
1997). 

Referring to Fig. 1 each cell is an ideal amplifier 
with )( ii umgv λ=  where g  is a “sigmoid” i.e. 

)1,1(: −→ℜg , 0)(' >≥ axg , 1)(lim ±=
±∞→

xg
x

 

and 0)('lim =
±∞→

xxg
x

. 0>λ  is “the gain”. Apart 

from interconnections 0>p  we consider here the 
mutual capacitance δ  between all pairs of inputs. It 
models the unavoidable parasitic effects on the crowded 
chips. We are interested in the influence of these 
capacitances on the network performances: is the WTA 

selection still working? How much is the network speed 
affected? 
 The processing list is fed by current sources id  
ordered as: 

 

)()2()1( Nddd σσσ >>> L                                     (1) 

where )(iσ  is a permutation of indices 1 to N . The 

network should signal that )1(σd  is the “winner”. This 
is done by choosing proper values of circuit parameters 
M , λ , m , a , p , l  including the ],0[ maxd  

admission interval and pt , the clocking time. Also we 
have to take into account the minimum density z  of 

arriving sequence of lists, which is 
max

)1(
d
Nz −Δ

=  

where ||min ji dd −=Δ . 
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Figure. 1: The i-th cell with all its interconnections 
 
The network in Fig. 1 is described by 
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t
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d
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                                              (2) 

 
where tr

Nuuu ),( 1 L= , tr
Nvvv ),,( 1 L= , 

tr
Nbbb ),,( 1 L=  with Mdb ii += . C  is the 

capacitance matrix with δ)1(0 −+= NCCii  and 
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δ−=ijC . T  is the resistive interconnection matrix, 

0=iiT , 0>= pTij . Also pNl )1(1
−+=

ρ
. 

 
As we show elsewhere, for each initial condition (2) has 
a unique solution )(tu  defined on ),0[ ∞ . Also, for 

almost all vector sources Nb ℜ∈  (2) has a finite 
number of equilibria u . They are solutions of the 
stationary equation 
 

bTvlu +−−=0                                                      (3) 
 
We can also show that the old Liapunov function 

introduced by Hopfield (Hopfield 1984), namely 
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works for our special case of C  being non-diagonal. 
This implies that for any solution )(tu  of (2) there 
exists an equilibrium u , solution of (3), such that 

utu →)(  when ∞→t . 
The proofs are omitted below. They can be found 

by the methods in (Calvert and Marinov 2000, Marinov 
and Calvert 2003, Marinov and Hopfield 2005, Chen, 
Lu and Amari 2002; Costea 2007, Costea and Marinov 
2006, Costea and Marinov 2007). 

 
2. THE WTA SELECTOR 
Here we give conditions on circuit and list parameters 
such that once the list (1) arrives, the circuit evolves 
toward an equilibrium u  with  
 

)()1( iuu σσ ββ >−>>                                           (4) 
 
for all Ni ,2∈ . Here β  is a threshold assuring a 
convenient resolution of output. 

The first result we give is “the ordering” property 
of the dynamic solution. This is, starting from zero and 

imposing 
pam

l
>λ  the order in (1) (where we took 

ii =)(σ  for writing simplicity) transfers to )(tu : 
 

)()()( 21 tututu NL>>                                        (5) 
 
for all 0>t . Then, by using “the difference equation” 
 

111 )()(0 +++ −+−+−−= iiiiii ddvvpuul       (6) 
 
and the above convergence, we derive 
 

Nuuu L>> 21                                                       (7) 
 
Next, we can show the WTA property  
 

Nuuuu >>>>−>> L321 ββ                      (8) 
 
provided that the following conditions are met: 
 

βl2≥Δ                                                                     (9) 
 

1)1( dNplM −−−≥ ξβ                                   (10) 
 

2)2( dmNpplM −−−+−≤ ξβ                  (11) 
 
Here )(λβξ mg=  , max1 zdd =  is the lowest 1d  

and Δ−−= )2(max2 Ndd  is the highest 2d . Thus 
(9)-(11) give conditions for (8) regardless the lists with 
density bigger than z . 

 
3. TIME BOUNDS 
We try now to obtain a clocking time for our machine. 
The moment pt  when we should stop the transient of 

)(tu  towards u  is when the WTA property (8) of u  
is fulfilled: 
 

)()()( 21 pNpp tututu >>>−>> Lββ      (12) 
 
As pt  is unknown, we try to obtain an upper bound of 

it pT  at which (12) is still valid. 
We distinguish two cases – Figs 2 and 3. 
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Figure. 2 The processing phase - case 1. The )1(σu  

winner surpasses the threshold β  after the moment 

when the losers )2(σu fall under β−  
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Figure. 3 The processing phase - case2. The )1(σu  

winner goes above β  before the moment when 

)2(σβ u=− . 
 

The first one, supposes )(2 tu  passes the WTA 

threshold β−  before )(1 tu  crosses its β+  level. 
Rigorously speaking, we suppose ]2,0[ βα ∈  and 

take the moment αt  when αβα −=)(1 tu , 

βα −=)(2 tu  and for all αtt > , β−<)(2 tu . The 

second case supposes )(1 tu  reaches β+  in advance of 

)(2 tu  touching β− . In this case we call αt  the 

moment when βα =)(1 tu , αβα +−=)(2 tu  and 

for all αtt >  β>)(1 tu . In both cases above we call 

pt  -processing time-, the first moment after αt  when 

β≥)(1 ptu  and β−≤)(2 ptu . With these, the 

problem of finding the clocking time pT  reduces to 

search for upper bounds αt  and αtt p −  of αt  and 

αtt p − respectively. We have ααα tttT pp −+=)( . 

The first bound αt  comes from “the difference 
equation” 
 

21212121 )()()(
d
d ddvvpuuluu
t
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where δNCCn += 0 . With 0)0)(( 21 =−uu  and 

αβα −=− 2))(( 21 tuu  we get 
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This is valid equally for the two cases and all 
]2,0[ βα ∈ . 

The evaluation of αtt p −  in case 1 comes from the first 
equation in (2) written as: 
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It yields  
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where 
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Here mzdd =1  and Δ−−= )( jNdd mij . 
For the case 2 we use the second equation in (2) 
 

∑ ∑
=

≠
=

+−−−−=
N

j

N

j
j

jj bvpuu
t

lu
t

uC
1

2
1

222
2

0 )(
d
d

d
d δ  

and get again (14) where 
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Here Δ−= mdd2  and Δ−−= )2(12 Ndd m . 

Now, (13) and (14) give the bound )(αpT  of 

processing time for every ]2,0[ βα ∈ . By imposing 

0
d
d

<
α

pT
 we find )0()(max pp TT =α  which gives 

a final bound: 
 

βll
CTt n

pp 2
ln)0(

−Δ
Δ
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The above imposition results in  
 

0>− βlW                                                             (18) 
 
for both two cases, and also 02 >−Δ βl  as in (9). 
These inequalities are made true by a proper choosing 
of circuit parameters M , ξ , β , m , p , md  when 
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the minimum list density z  and the maximum parasitic 
capacitance δ  are given. Our evaluations works for 

[ ]2,0 0 −∈ NCδ . 
Also, in this context we can answer the natural 
question: “is the processing time longer when the 
parasitic capacitance increases?” For these, by knowing 
from above that the maximum of pt  happens when 1u  

and 2u  simultaneously reach β+  respectively β−  , 

we give bilateral bounds of pt : 
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If δ

pt  is the processing time with parasitic capacitance 

δ  then the from (19) we can easily infer 0=≥ δδ
pp tt  for 

0)2(
2 C

lN
pm

β
δ

−Δ
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4. CONCLUSION 
All of above give analytical relations between 
parameters to fulfill the WTA property. They are (9)-
(11) and (18). The clocking time is given by (17), which 
provides a mean to influence the processing speed when 
the crosstalk is considered and very tight lists are fed. 
The assumptions under which our results are reasonable 
for practical purposes. 
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