
TEMPLATES FOR DISTRIBUTED AGENT-BASED SIMULATIONS ON A QUASI-

OPPORTUNISTIC GRID

Laszlo Gulyas(a,b), Walter de Back(b), Gabor Szemes(b,a),

Krzysztof Kurowski
(c)

, Werner Dubitzky
(d)

, George Kampis
(b)

(a)
AITIA International Inc, Budapest, Hungary

(b)
Collegium Budapest, Hungary

(c)
University of Queensland, Brisbane, Australia

(d)
University of Ulster, Ireland

lgulyas@aitia.ai, wdeback@colbud.hu, gszemes@aitia.ai,

k.kurowski@imb.uq.edu.au, w.dubitzky@ulster.ac.uk, gkampis@colbud.hu

ABSTRACT

Complex systems are defined as systems with many

interdependent parts which give rise to non-linear and

emergent properties. Supercomputers constitute the de

facto technology to deliver the required computational

performance. However, supercomputers involve

considerable costs, which many organizations cannot

afford. The working assumption of this paper is that a

grid could be enhanced by suitable middleware to

provide features similar to those of supercomputers.

However, simulation developers will face additional

difficulties when adopting their applications to the grid.

That is because the underlying topology of the

computational infrastructure is dynamic. This paper

reports on an ongoing effort to develop templates for

distributed simulations on the grid with the integration

of the Repast and ProActive packages.

Keywords: grid computing, agent-based simulation,

opportunistic supercomputing, complex systems

simulation templates

1. INTRODUCTION

Complex systems are defined as systems with many

interdependent parts which give rise to non-linear and

emergent properties determining the high-level

functioning and behavior of such systems. Due to the

interdependence of their constituent elements and other

characteristics of complex systems, it is difficult to

predict system behavior based on the ‘sum of their

parts’ alone. Examples of complex systems include bee

hives, bees themselves, human economies and societies,

nervous systems, molecular interactions, cells and

living things, ecosystems, as well as modern energy or

telecommunication infrastructures. Arguably one of the

most striking properties of complex systems is that

conventional experimental and engineering approaches

are inadequate to capture and predict the behavior of

such systems.

 To complement the conventional experimental and

engineering approaches, computer-based simulations of

complex natural phenomena and complex man-made

artifacts are increasingly employed across a wide range

of sectors. Agent-based simulation is a suitable and

useful modeling paradigm for the decomposition and

study of complex systems. (North and Macal, 2007)

Typically, such simulations require computing

environments which meet very high specifications in

terms of processing units, primary and secondary

storage, and communication. Supercomputers constitute

the de facto technology to deliver the required

specifications. Acquiring, operating and maintaining

supercomputers involve considerable costs, which many

organizations cannot afford. The working assumption of

this paper (following that of the QosCosGrid project

(Coti et al, 2008), http://www.qoscosgrid.eu/) is that a

grid could be enhanced by suitable middleware to

provide features and performance characteristics that

resemble those of a supercomputer. We refer to such a

grid as quasi-opportunistic supercomputer. The

QosCosGrid project aims at developing such a system.

Computational simulations on supercomputers or on

grid systems naturally require a distributed

implementation. However, this complicates the model

development significantly, especially, in cases of

experimental, incremental model development, where

the model structure may change dramatically during

development. Moreover, the implementation complexity

may go beyond the capabilities or interests of

researchers in complex systems.

 To face these issues, we are developing integration

between the agent simulation toolkit Repast (North et

al, 2006) and ProActive (Baude et al, 2006), a

middleware for multi-threading, parallel and distributed

computing, currently being interfaced with the

QosCosGrid. This combination facilitates the design

and deployment of distributed agent-based simulations

over multiple computational nodes on multi-core

machines, local clusters, and grid environments.

 Naturally, the distribution and parallelization of

computer programs, and thus simulations cannot be

fully automatized. Parallelization is a multi-dimensional

optimization problem. Two of the major dimensions are

the minimization of communication between nodes, and

the balancing of the processing load among the nodes.

Except for the simplest programs, these are non-trivial

issues that require in-depth knowledge about the

workings of the particular program (simulation).

However, general schemas for solutions exist,

especially if the priority among the two major

dimensions above is defined.

300

Our approach is to focus on the minimization of

communication. We have identified classes of

simulations that share common (agent-to-agent)

communication templates. We are currently in the

process of developing distributed and parallel

Repast/ProActive implementations for these templates

that can be subclassed and customized for particular

user simulations. (Load balancing and other issues are

handled, optionally, within the framework of the

selected template.) The supported templates range from

embarrassingly parallel applications such as parameter

sweeps, to cellular automata, to static and dynamic

(communication) networks, and to agents moving in

abstract spaces.

The paper overviews the project's main directions and

presents the current status, including working examples

and prototypes.

2. THE QOSCOSGRID

The term supercomputer typically refers to a dedicated

special-purpose multiprocessor computing system that

provides close to best achievable performance for

demanding parallel workloads. Supercomputers have

several characteristics that enable them to efficiently

execute considerable computational loads.

1. High-end and highly reliably hardware

components, such as processing units,

primary and secondary memory, and

interconnects

2. Supercomputer middleware provides a

straightforward abstraction of a

homogeneous computational and

networking environment, automatically

allocating resources according to the

underlying networking topology

3. The resources of a supercomputer are

managed exclusively by a single

centralized system, which enforces global

resource utilization policies, thus

maximizing hardware utilization while

minimizing the turnaround time of

individual applications.

These characteristics endow supercomputers with

unprecedented performance, stability, and dependability

properties.

Grid computing systems could be viewed as large-scale

computing systems with considerable levels of

hardware resources but with a lack of the features that

make supercomputers so powerful. In particular, grids

usually lack sophisticated support for highly parallel

applications with significant inter-process

communication requirements. Grid computing

environments are based on heterogeneous, widely

dispersed and time-variant resources which typically

lack central control. Connected via local and wide area

networks, grids typically rely on an opportunistic

marshaling of resources into coordinated action to meet

the needs of large-scale computing applications. Grids

are often offered as panacea for all kinds of computing

applications, including those that require

supercomputing-like computing environments.

However, this vision of grids as virtual supercomputers

is unattainable without overcoming the performance and

reliability issues plaguing current grids.

 The main challenge of the QosCosGrid project is to

overcome the current limitations of grids and implement

a virtual computer which could be considered a viable

approximation of a real supercomputer. The details of

the proposed technical solutions are reported elsewhere.

(Coti et al, 2008)

2.1. Requirements of Complex Systems Simulations

Despite the variety of scientific, engineering and other

areas in which complex systems need to be studied and

modeled, the key information technology requirements

for computational modeling and simulation of complex

systems are essentially identical across many domains

and applications. These requirements include:

• Integration of large heterogeneous volumes of

data and information that may arise from

simulation or other information systems, which

may be geographically widely dispersed.

• Design and execution of compute- and

memory-intensive simulation programs may

require resources that are not available locally.

• Handling the considerable volumes of data

generated as output from the underlying

simulations. These data need to be managed,

analyzed and then shared using varied

computational methodologies.

To address these requirements and achieve the main

aims of the QosCosGrid project, the project is

structured into the following key objectives:

• First, to provide a quasi-opportunistic

supercomputing grid architecture and

infrastructure which includes (i) Necessary

grid middleware services including monitoring

and measurement capabilities, (ii) User

interfaces that enable easy access and use of

resources by hiding the underlying complexity

of the system, (iii) Flexible fault-tolerant

message passing libraries, (iv) Data

distribution enabling technology, and (v)

Remote steering capabilities;

• Second, to develop services that provide (i)

Dynamic resource brokering giving the best

quality-of-service to any given complex

system simulation, (ii) Reservation and

orchestration of resources, communication,

synchronization and routing as known from

massively parallel processors computers.

• Third, to validate the quasi-opportunistic

supercomputing concept with various types of

complex systems simulation applications

including (i) Research into the non-trivial

parallelization of the simulation- and data-

301

processing applications typically encountered

in the CS research, and (ii) to adapt the

underlying algorithms to the quasi-

opportunistic supercomputing environment.

This paper is focused on the last two items of the above

ambitious set of goals.

3. COMPLEX SYSTEMS SIMULATIONS ON

THE GRID

In this section, we provide a general abstract description

of complex systems simulations that captures essential

properties influencing the distributed implementation of

such systems. As with every abstraction, certain details

of individual cases are omitted, but to our belief,

without the loss of generality.

 (1) Interaction topology. A complex system

consists of a finite set of interacting components. In our

abstract treatment, each component will have a single

state variable and an update function. (Notice that the

single state variable can, in practice, be a combination

of any finite number of variables.) The update function

depends on the state variable itself and on the states of a

subset of the other components. (The update function

can be deterministic or probabilistic, in which latter

case it yields a probability distribution of the next state.)

The update functions’ dependence on other components

defines the communication pattern or interaction

topology of the complex system.

 (2) Parameter space. Simulations deal with the

calculation of the time-dynamics of the given complex

system for a specific combination of initial parameters.

In some cases, the execution of the simulation for a few

initial parameter combinations suffices, but typically, a

parameter space search is necessary to assess the

system’s behaviour over a range of parameter

combinations.

 (3) Homogeneity vs heterogeneity. Complex

systems can be homogenous or heterogeneous, in that

the components may or may not share the same type of

state variables. Similarly, the communication pattern

can also be non-uniform, when the dependencies of the

update functions are heterogeneous. Additional

complexity may result from the number of components

changing in time, albeit in a theoretical discussion this

can always be circumvented by giving an estimate of

the maximum number of components. In some cases,

the communication pattern is dynamic, even among a

static set of components. Formally, this issue can also

be avoided by assuming dependence on all other

components, some of which dependences may be

rendered temporarily inactive. However, our goal is to

exploit as much of the available dependency

information as possible, therefore, we will explicitly

deal with the temporal dynamics of the interaction

topology when necessary.

 (4) In-run and inter-run parallelization. For

exploiting the benefits of a distributed, parallel

implementation two major strategies exists. One

distributes entire simulation runs across a pool of

computers (termed in various ways: parameter space

search, parameter sweeping, inter-run parallelization,

etc.), while the other attempts to distribute individual

runs across computers (sometimes termed in-run, or

intra-run parallelization). It is worth noting that in

many cases complex systems simulations are

communication heavy, implying that their distribution

incurs a strong communication penalty. Yet, in some

cases, it is still worthwhile to distribute them for

memory gain: a distributed implementation allows for

experimenting with large systems (in the number of

components) that would otherwise be impossible or

very costly.

 In the following discussion, we will treat in-run and

inter-run parallelization in a unified discussion. Our

goal in doing so is to provide a short check-list and a

characterization that helps in identifying the potential

benefits of a distributed implementation for any given

complex systems simulation.

3.1. Partitioning Complex Systems Simulations
The main challenge addressed here is the allocation of

complex systems components to computational nodes,

i.e., the partitioning of the complex systems simulation,

subject to minimizing the execution time of the

distributed implementation. (Note, that a version of the

minimizing requirement is present also in the case when

the goal of distribution is the memory gain.) To cut

down on execution time in a distributed environment,

one must

• Minimize communication among components

in different partitions, and

• Balance the computational load at each

partition (i.e., execution time in between

information exchange among the partitions).

In order to achieve the latter, the computational

activities at each computational node should be in

proportion with the performance of that node. Grid

systems are inherently heterogeneous and dynamic and,

as discussed earlier, complex systems components can

also be heterogeneous and dynamic also. These features

taken together would make any abstract analysis very

hard. Therefore, we decided to focus on the

communication aspect of distribution, trying to classify

complex systems simulations based on their

communication patterns.

 A simple way of putting this is formulating the

sufficient assumption, that all computational nodes are

uniform and homogenous. However, this is not a

necessary requirement, our classification of

communication patterns below can be also used to

develop distributed simulations for non-uniform

computational systems as well. In fact, more

sophisticated implementations based on these

classifications are expected to take load-balancing

aspects into account as well. On the other hand, in grid

systems, communication costs are often prohibiting

across computational clusters, while they are more

relaxed among computers belonging to the same cluster.

Therefore, our focus on minimizing communication is

302

also useful to allocate complex systems components to

computational clusters, assuming that load balancing

will be handled locally, at the local clusters.

3.2. Communication Templates for Complex

Systems Simulations

Our approach here is to study the interaction topology

of complex systems simulations in isolation, in an

attempt to classify frequently occurring cases into

communication templates. Each identified template can

then be accompanied by template implementations and

usage advices, based on the classic parallel and

distributed computing literature. The general idea here

is that complex system modelers can (i) first identify the

communication class their models belong to, and then

(ii) “fill in” one of the implemented simulation

templates provided with their model-specific details.

This way, they might not achieve the most efficient

distributed implementation of their models, but their

implementation efforts will be significantly lowered.

 We first point out two extreme cases. In the first

scenario, dependencies among components are

completely random (e.g., from a uniform random

distribution) and change regularly in time (e.g.,

dependencies are re-sampled prior to each update). The

second special case is when no communication occurs

among complex systems components. One might argue

that these are “useless” or “hopeless” examples, and

that a collection of components like in our second

example is hardly a system at all. However, we believe

this is but a question of level of abstraction. In the first

scenario, which is not as uncommon as it may seem,

there is hardly a better advice regarding a distributed

implementation than relying on a distributed parameter

space search. Which is just an example of our second

scenario: the individual simulation runs can be viewed

as non-interacting components. On the other hand, more

sophisticated parameter space search methods introduce

dependencies among individual runs, by determining

the next parameter combinations to explore based on

results collected earlier (i.e., sampling in the more

turbulent parameter regions, etc.). In this case, the

parameter space search becomes a non-trivial complex

system again, worthy of dependency analysis on its

own.

 Dealing with more complex cases, our first

observation is that static communication patterns allow

for the direct application of distribution algorithms.

Therefore we will handle these cases separately from

the dynamic topologies.

 Next, we point out that the dependencies of the

update functions may be dependent on the components’

states. In many cases, the components’ state information

can be projected to a metric space and update

dependencies correlate with distance in this space. For

example, if components are agents moving in a space

(in computational models often on a two-dimensional

lattice) then, each agent’s state will (among possibly

other things) include the coordinates of the agent. If in

the model the agents interact only with the agents in

their vicinity, then the update dependencies of the

components will be thus distance-dependent. This

spatial property of a complex systems simulation, if

present, may be successfully exploited in determining

the partitions of a distributed implementation. It is

worth noting, however, that complex systems may have

such a spatial property implicitly. For example, a social

system where people are likely to interact with like-

minded partners may have this property where the

natural metric space is an abstract similarity space.

Table 1. Categorization of the Various Communication

Templates

 Based on the observations above, we propose 5+1

communication templates that, as we believe, are the

commonly occurring classes of complex systems

simulations.

 Certainly, it would be possible to identify many

more, or to refine this classification by dividing some of

the templates proposed here. However, we believe these

5+1 patterns
1
 are applicable (see Table 1), to a varying

extent, a large majority of complex systems simulations,

and that useful advices can be formulated for each of

them.
 Template0 (T0) of our classification is the case

where no interaction occurs among components. Here

the components’ partitioning is only constrained by load

balancing considerations.

 Template5 (T5), the other extreme, is the case with

random or unpredictable interaction among

components, for which we suggest ‘to step one level up’

and the implementation of a distributed parameter

search as in Template0. The four remaining cases are

created at the intersection of the spatial/non-spatial and

static/dynamic properties.

1
 We identify 6 communication topologies (or

templates), but since for the two extreme cases (T0 and

T5) our proposed technical solution is very similar,

albeit for different reasons, we prefer to talk about 5+1

templates.

303

 Template1 (T1) (Static Networks) describes a non-

spatial system with a static communication pattern. It is

assumed that the exact communication pattern can be

extracted from the system, or that it is defined

explicitly. To the thus defined communication graph a

variety of graph partitioning algorithms can be applied.

(Fjällström, 1998)

 Template2 (T2) (Dynamic Networks) introduces

dynamism in Template1. The assumption about the

existence of a communication graph is maintained, but,

in contrast to Template5, it is assumed that the changes

and their frequency are defined by a graph transition

function that provides enough information on the

system’s efficient distribution. (Sometimes, it may be

sufficient to know that the level of change in the

communication graph is low, such that it is sufficient to

re-partition nodes at every 10000 time steps, or so.) The

implementation approach we propose for such systems

is the regular application of classic graph repartitioning

algorithms (i.e., graph partitioning algorithms that

attempt to improve on an existing partition). (Barnard

and Simon, 1993) Please also note, however, that in the

limiting case, Template2 leads to Template5.

 Template3 (T3) (Static Spatial Systems) moves

away from Template1 along the other axis. It maintains

the assumption about a static communication pattern,

but requires the spatial property. Prime examples of

such systems are cellular automata. Template3 is the

pattern most prone to a distributed implementation,

most of which can be derived from methods and

algorithms developed for distributed cellular automata

implementations. (Mazzariol et al, 2000)(Maniatty et

al, 1998)

Fig. 1. The Pages from the Distributed Parameter

Sweep Wizard for Repast

 Finally, Template4 (T4) (Dynamic Spatial

Systems) assumes a spatial system, in which the

communication pattern evolves over time. One example

of such system is the above discussed case when agents

move in space and communicate with those in their

vicinity. For the distribution of complex systems

belonging to this template, we point to algorithms

specially developed for such systems, using buffering

and messaging solutions and ways of predicting the

speed of spatial movement. (Scheutz and Schermerhorn,

2005)(Gilbert et al, 2006) (The latter may be used to

predict the next time communication among partitions

or repartitioning becomes necessary.) It is worth

pointing out that the fundamental assumption of this

template and thus a key to the successful

implementation of these solutions is that changes in

spatial positions are slow relative to the frequency of

state updates.

3.3. Implementation Status

Above we have categorized complex systems

simulations into 5+1 classes, based on their internal

communication structure. These communication

templates form the base of the simulation templates

written in Repast that QosCosGrid will provide for

complex systems modelers.

Fig. 2. Screenshot from a Distributed Cellular Automata

Simulation Implemented with the T3 Simulation

Template.

The project reported in this paper is work in progress. A

number of working results are already available. An

advanced tool for user friendly and extensible parameter

sweeping (a solution offered for T0 and T5 above) of

Repast simulations with ProActive was reported in

(Iványi et al, 2007) and is available from

http://meme.aitia.ai/. (See Fig. 1.) Furthermore,

simulation templates for models with complying with

T1 or T3 were reported in (de Back et al, 2008). (See

Fig. 2.) The development of simulation templates for T2

and T4 is an ongoing effort.

4. DISCUSSION AND RELATED WORK

Distributed programming is almost as old as computer

science itself. Therefore the problem is graph

partitioning (which is the theoretical abstraction of

communication minimization and load balancing) is an

aged and well-studied problem. (Fjällström , 1998) In

fact, the simulation templates proposed above for T1-T4

are all based on decades old algorithms, except for one,

T4. (Barnard and Simon, 1993) (Hendrickson and

Leland, 1995)(Karypis and Kumar, 1997)(Ou and

Ranka, 1997)

On the other hand, complex systems simulations have

been implemented for supercomputers for several

decades now (depending on the exact definition of the

field). However, these implementations were mostly

done by professional computer scientists and were

304

tailored to the particular problem and infrastructure at

hand. (That is, naturally, the approach to take for the

most efficient implementation.)

Over the last decade, the increasing capacity of

computers and the advent of the agent-based modeling

approach made possible to describe models in a way

close to the modeled system. This development opened

the way for a whole new class of scientists to create and

study their models without relying on professional

programmers. However, a distributed implementation

was so far beyond the reach of these modelers. Work

only recently started to address this problem. (Chen et

al, 2008) The simulation templates proposed in this

paper belong to these novel efforts. They are intended to

be used as a blueprint by complex systems modelers.

5. CONCLUSIONS

This paper reported on an ongoing effort to develop

templates for distributed simulations on the grid with

the integration of the Repast and ProActive packages.

The approach to manage the multi-dimensional

optimization problem of program partitioning was

discussed, together with a classification of complex

systems simulations into 5+1 categories, based on their

communication structure. These communication

templates are then used to develop implementation

schemas for complex systems simulations.

The general context of is a quasi-opportunistic

approach (i) to develop a special purpose middleware

that augments grid systems with supercomputer-like

properties (number of processing units, temporarily

static communication channels, etc.), and (ii) to provide

complex systems modelers with a flexible and easy-to-

approach platform to develop distributed agent-based

simulations.

ACKNOWLEDGMENTS

The present work is being carried out within the frame

of the QosCosGrid (Quasi-Opportunistic Supercom-

puting for Complex Systems Simulations on the Grid)

project funded by the European Commission's 6th

Framework Programme. The partial support of the EC

under grant QosCosGrid IST FP6 #033883 is gratefully

acknowledged.

REFERENCES

de Back, W., Szemes, G., Kampis, G., Gulyás, L.,

„Distributed simulation templates for repast”, In

Conference of the Swarm Development Group,

Chicago (SwarmFest 2008), 2008.

Barnard, S. T., & Simon, H. D., „A fast multilevel

implementation of recursive spectral bisection for

partitioning unstructured problems”, In Proc. 6th

SIAM Conf. Parallel Processing for Scientic

Computing (pp. 711-718), 1993.

Baude F., Baduel L., Caromel D., Contes A., Huet F.,

Morel M. and Quilici R., ‘Programming,

Composing, Deploying for the Grid”,

in GRID COMPUTING: Software Environments

and Tools, Jose C. Cunha and Omer F. Rana (Eds),

Springer Verlag, January 2006.

Chen, D., Theodoropoulos, G. K., Turner, S. J., Cai, W.,

Minson, R., and Zhang, Y., „Large scale agent-

based simulation on the grid”, Future Generation.

Computer Systems, 24, 7 (Jul. 2008), 658-671.

Coti, C., Herault, T., Peyronnet, S., Rezmerita, A.,

Cappello, F., „Grid Services For MPI”,

Proceedings of the 8th IEEE International

Symposium on

Cluster Computing and the Grid (CCGrid'08), to

appear, Lyon, France, 2008. 05. 14.

Fjällström, P.-O., „Algortihms for Graph Partitioning:

A Survey”, Linköping Electronic Articles in

Computer and Information Science, 3,

http://www.ep.liu.se/ea/cis/1998/1010/, 1998.

Gilbert, N., den Besten, M., Bontovics, A., Craenen, B.

G. W., Divina, F., Eiben, A. E., et al., „Emerging

Artificial Societies Through Learning”, Journal of

Artificial Societies and Social Simulation 9

http://jasss.soc.surrey.ac.uk/9/2/ 9.html, 2006.

Hendrickson, B., & Leland, R., „An improved spectral

graph partitioning algorithm for mapping parallel

computations”, SIAM J. Sci. Comput., 16, 452-

469., 1995.

Iványi, M., Gulyás, L., Bocsi, R., Szemes, G.,

Mészáros, R., „Model Exporation Module”, Agent

2007: Complex Interaction and Social Emergence

Conference, Evanston, IL, November 15-18, 2007

Karypis, G., & Kumar, V.. „A coarse grain parallel

formulation of multilevel k-way graph partitioning

algorithm”, In Proc. Eighth SIAM Conference on

Parallel Processing for Scientic Computing, 1997.

Maniatty, W. A., Szymanski, B. K., & Caraco, T.,

„Parallel computing with generalized cellular

automata”, Parallel and Distributed Computing

Practices, 1, 31-50., 1998.

Mazzariol, M., Gennart, B. A., & Hersch, R. D.,

„Dynamic load balancing of parallel cellular

automata”. Paper presented at the SPIE

Conference: Parallel and Distributed Methods for

Image Processing IV, San Diego, USA, 2000.

North, M.J., Macal, C.M., Managing Business

Complexity: Discovering Strategic Solutions with

Agent-Based Modeling and Simulation (Oxford

2007)

North, M.J., N.T. Collier, and J.R. Vos, “Experiences

Creating Three Implementations of the Repast

Agent Modeling Toolkit”, ACM Transactions on

Modeling and Computer Simulation, Vol. 16, Issue

1, pp. 1-25, ACM, New York, New York, USA

(January 2006).

Ou, C.-W., & Ranka, S., „Parallel incremental graph

partitioning”, IEEE Transactions on Parallel and

Distributed Systems, 8, 884-896, 1997.

Scheutz, M., & Schermerhorn, P.. “Adaptive

Algorithms for the Dynamic Distribution and

Parallel Execution of Agent-Based Models”.

Journal of Parallel and Distributed Computing,

66, 1037-1051., 2005.

305

