
TEMPLATES FOR DISTRIBUTED AGENT-BASED SIMULATIONS ON A QUASI-

OPPORTUNISTIC GRID 
 

Laszlo Gulyas(a,b), Walter de Back(b), Gabor Szemes(b,a),  

Krzysztof Kurowski 
(c)

, Werner Dubitzky 
(d)

,  George Kampis 
(b)

 
 

(a)
AITIA International Inc, Budapest, Hungary 

(b)
Collegium Budapest, Hungary 

(c)
University of Queensland, Brisbane, Australia 

(d)
University of Ulster, Ireland 

 

lgulyas@aitia.ai, wdeback@colbud.hu, gszemes@aitia.ai,  

k.kurowski@imb.uq.edu.au, w.dubitzky@ulster.ac.uk, gkampis@colbud.hu 

 

ABSTRACT 

Complex systems are defined as systems with many 

interdependent parts which give rise to non-linear and 

emergent properties. Supercomputers constitute the de 

facto technology to deliver the required computational 

performance. However, supercomputers involve 

considerable costs, which many organizations cannot 

afford. The working assumption of this paper is that a 

grid could be enhanced by suitable middleware to 

provide features similar to those of supercomputers. 

However, simulation developers will face additional 

difficulties when adopting their applications to the grid. 

That is because the underlying topology of the 

computational infrastructure is dynamic. This paper 

reports on an ongoing effort to develop templates for 

distributed simulations on the grid with the integration 

of the Repast and ProActive packages. 
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1. INTRODUCTION 

Complex systems are defined as systems with many 

interdependent parts which give rise to non-linear and 

emergent properties determining the high-level 

functioning and behavior of such systems. Due to the 

interdependence of their constituent elements and other 

characteristics of complex systems, it is difficult to 

predict system behavior based on the ‘sum of their 

parts’ alone. Examples of complex systems include bee 

hives, bees themselves, human economies and societies, 

nervous systems, molecular interactions, cells and 

living things, ecosystems, as well as modern energy or 

telecommunication infrastructures. Arguably one of the 

most striking properties of complex systems is that 

conventional experimental and engineering approaches 

are inadequate to capture and predict the behavior of 

such systems.  

 To complement the conventional experimental and 

engineering approaches, computer-based simulations of 

complex natural phenomena and complex man-made 

artifacts are increasingly employed across a wide range 

of sectors. Agent-based simulation is a suitable and 

useful modeling paradigm for the decomposition and 

study of complex systems. (North and Macal, 2007) 

Typically, such simulations require computing 

environments which meet very high specifications in 

terms of processing units, primary and secondary 

storage, and communication. Supercomputers constitute 

the de facto technology to deliver the required 

specifications. Acquiring, operating and maintaining 

supercomputers involve considerable costs, which many 

organizations cannot afford. The working assumption of 

this paper (following that of the QosCosGrid project 

(Coti et al, 2008), http://www.qoscosgrid.eu/) is that a 

grid could be enhanced by suitable middleware to 

provide features and performance characteristics that 

resemble those of a supercomputer. We refer to such a 

grid as quasi-opportunistic supercomputer. The 

QosCosGrid project aims at developing such a system.  

 

Computational simulations on supercomputers or on 

grid systems naturally require a distributed 

implementation. However, this complicates the model 

development significantly, especially, in cases of 

experimental, incremental model development, where 

the model structure may change dramatically during 

development. Moreover, the implementation complexity 

may go beyond the capabilities or interests of 

researchers in complex systems. 

 To face these issues, we are developing integration 

between the agent simulation toolkit Repast (North et 

al, 2006) and ProActive (Baude et al, 2006), a 

middleware for multi-threading, parallel and distributed 

computing, currently being interfaced with the 

QosCosGrid. This combination facilitates the design 

and deployment of distributed agent-based simulations 

over multiple computational nodes on multi-core 

machines, local clusters, and grid environments. 

 Naturally, the distribution and parallelization of 

computer programs, and thus simulations cannot be 

fully automatized. Parallelization is a multi-dimensional 

optimization problem. Two of the major dimensions are 

the minimization of communication between nodes, and 

the balancing of the processing load among the nodes. 

Except for the simplest programs, these are non-trivial 

issues that require in-depth knowledge about the 

workings of the particular program (simulation). 

However, general schemas for solutions exist, 

especially if the priority among the two major 

dimensions above is defined. 
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Our approach is to focus on the minimization of 

communication. We have identified classes of 

simulations that share common (agent-to-agent) 

communication templates. We are currently in the 

process of developing distributed and parallel 

Repast/ProActive implementations for these templates 

that can be subclassed and customized for particular 

user simulations. (Load balancing and other issues are 

handled, optionally, within the framework of the 

selected template.) The supported templates range from 

embarrassingly parallel applications such as parameter 

sweeps, to cellular automata, to static and dynamic 

(communication) networks, and to agents moving in 

abstract spaces. 

 

The paper overviews the project's main directions and 

presents the current status, including working examples 

and prototypes. 

 

2. THE QOSCOSGRID 

The term supercomputer typically refers to a dedicated 

special-purpose multiprocessor computing system that 

provides close to best achievable performance for 

demanding parallel workloads. Supercomputers have 

several characteristics that enable them to efficiently 

execute considerable computational loads.  

1. High-end and highly reliably hardware 

components, such as processing units, 

primary and secondary memory, and 

interconnects 

2. Supercomputer middleware provides a 

straightforward abstraction of a 

homogeneous computational and 

networking environment, automatically 

allocating resources according to the 

underlying networking topology 

3. The resources of a supercomputer are 

managed exclusively by a single 

centralized system, which enforces global 

resource utilization policies, thus 

maximizing hardware utilization while 

minimizing the turnaround time of 

individual applications. 

These characteristics endow supercomputers with 

unprecedented performance, stability, and dependability 

properties.  

 

Grid computing systems could be viewed as large-scale 

computing systems with considerable levels of 

hardware resources but with a lack of the features that 

make supercomputers so powerful. In particular, grids 

usually lack sophisticated support for highly parallel 

applications with significant inter-process 

communication requirements. Grid computing 

environments are based on heterogeneous, widely 

dispersed and time-variant resources which typically 

lack central control. Connected via local and wide area 

networks, grids typically rely on an opportunistic 

marshaling of resources into coordinated action to meet 

the needs of large-scale computing applications. Grids 

are often offered as panacea for all kinds of computing 

applications, including those that require 

supercomputing-like computing environments. 

However, this vision of grids as virtual supercomputers 

is unattainable without overcoming the performance and 

reliability issues plaguing current grids.  

 The main challenge of the QosCosGrid project is to 

overcome the current limitations of grids and implement 

a virtual computer which could be considered a viable 

approximation of a real supercomputer. The details of 

the proposed technical solutions are reported elsewhere. 

(Coti et al, 2008) 

 

2.1. Requirements of Complex Systems Simulations  

Despite the variety of scientific, engineering and other 

areas in which complex systems need to be studied and 

modeled, the key information technology requirements 

for computational modeling and simulation of complex 

systems are essentially identical across many domains 

and applications. These requirements include:  

• Integration of large heterogeneous volumes of 

data and information that may arise from 

simulation or other information systems, which 

may be geographically widely dispersed. 

• Design and execution of compute- and 

memory-intensive simulation programs may 

require resources that are not available locally. 

• Handling the considerable volumes of data 

generated as output from the underlying 

simulations. These data need to be managed, 

analyzed and then shared using varied 

computational methodologies. 

To address these requirements and achieve the main 

aims of the QosCosGrid project, the project is 

structured into the following key objectives: 

• First, to provide a quasi-opportunistic 

supercomputing grid architecture and 

infrastructure which includes  (i) Necessary 

grid middleware services including monitoring 

and measurement capabilities, (ii) User 

interfaces that enable easy access and use of 

resources by hiding the underlying complexity 

of the system, (iii) Flexible fault-tolerant 

message passing libraries, (iv) Data 

distribution enabling technology, and (v) 

Remote steering capabilities; 

• Second, to develop services that provide (i) 

Dynamic resource brokering giving the best 

quality-of-service to any given complex 

system simulation, (ii) Reservation and 

orchestration of resources, communication, 

synchronization and routing as known from 

massively parallel processors computers. 

• Third, to validate the quasi-opportunistic 

supercomputing concept with various types of 

complex systems simulation applications 

including (i) Research into the non-trivial 

parallelization of the simulation- and data-
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processing applications typically encountered 

in the CS research, and (ii) to adapt the 

underlying algorithms to the quasi-

opportunistic supercomputing environment. 

 

This paper is focused on the last two items of the above 

ambitious set of goals. 

 

3. COMPLEX SYSTEMS SIMULATIONS ON 

THE GRID 

In this section, we provide a general abstract description 

of complex systems simulations that captures essential 

properties influencing the distributed implementation of 

such systems. As with every abstraction, certain details 

of individual cases are omitted, but to our belief, 

without the loss of generality.  

 (1) Interaction topology. A complex system 

consists of a finite set of interacting components. In our 

abstract treatment, each component will have a single 

state variable and an update function. (Notice that the 

single state variable can, in practice, be a combination 

of any finite number of variables.) The update function 

depends on the state variable itself and on the states of a 

subset of the other components. (The update function 

can be deterministic or probabilistic, in which latter 

case it yields a probability distribution of the next state.) 

The update functions’ dependence on other components 

defines the communication pattern or interaction 

topology of the complex system.  

 (2) Parameter space. Simulations deal with the 

calculation of the time-dynamics of the given complex 

system for a specific combination of initial parameters. 

In some cases, the execution of the simulation for a few 

initial parameter combinations suffices, but typically, a 

parameter space search is necessary to assess the 

system’s behaviour over a range of parameter 

combinations.  

 (3) Homogeneity vs heterogeneity. Complex 

systems can be homogenous or heterogeneous, in that 

the components may or may not share the same type of 

state variables. Similarly, the communication pattern 

can also be non-uniform, when the dependencies of the 

update functions are heterogeneous. Additional 

complexity may result from the number of components 

changing in time, albeit in a theoretical discussion this 

can always be circumvented by giving an estimate of 

the maximum number of components. In some cases, 

the communication pattern is dynamic, even among a 

static set of components. Formally, this issue can also 

be avoided by assuming dependence on all other 

components, some of which dependences may be 

rendered temporarily inactive. However, our goal is to 

exploit as much of the available dependency 

information as possible, therefore, we will explicitly 

deal with the temporal dynamics of the interaction 

topology when necessary. 

 (4) In-run and inter-run parallelization. For 

exploiting the benefits of a distributed, parallel 

implementation two major strategies exists. One 

distributes entire simulation runs across a pool of 

computers (termed in various ways: parameter space 

search, parameter sweeping, inter-run parallelization, 

etc.), while the other attempts to distribute individual 

runs across computers (sometimes termed in-run, or 

intra-run parallelization). It is worth noting that in 

many cases complex systems simulations are 

communication heavy, implying that their distribution 

incurs a strong communication penalty. Yet, in some 

cases, it is still worthwhile to distribute them for 

memory gain: a distributed implementation allows for 

experimenting with large systems (in the number of 

components) that would otherwise be impossible or 

very costly.  

 In the following discussion, we will treat in-run and 

inter-run parallelization in a unified discussion. Our 

goal in doing so is to provide a short check-list and a 

characterization that helps in identifying the potential 

benefits of a distributed implementation for any given 

complex systems simulation. 

 

3.1. Partitioning Complex Systems Simulations 
The main challenge addressed here is the allocation of 

complex systems components to computational nodes, 

i.e., the partitioning of the complex systems simulation, 

subject to minimizing the execution time of the 

distributed implementation. (Note, that a version of the 

minimizing requirement is present also in the case when 

the goal of distribution is the memory gain.) To cut 

down on execution time in a distributed environment, 

one must  

• Minimize communication among components 

in different partitions, and 

• Balance the computational load at each 

partition (i.e., execution time in between 

information exchange among the partitions). 

In order to achieve the latter, the computational 

activities at each computational node should be in 

proportion with the performance of that node. Grid 

systems are inherently heterogeneous and dynamic and, 

as discussed earlier, complex systems components can 

also be heterogeneous and dynamic also. These features 

taken together would make any abstract analysis very 

hard. Therefore, we decided to focus on the 

communication aspect of distribution, trying to classify 

complex systems simulations based on their 

communication patterns.  

 A simple way of putting this is formulating the 

sufficient assumption, that all computational nodes are 

uniform and homogenous. However, this is not a 

necessary requirement, our classification of 

communication patterns below can be also used to 

develop distributed simulations for non-uniform 

computational systems as well. In fact, more 

sophisticated implementations based on these 

classifications are expected to take load-balancing 

aspects into account as well. On the other hand, in grid 

systems, communication costs are often prohibiting 

across computational clusters, while they are more 

relaxed among computers belonging to the same cluster. 

Therefore, our focus on minimizing communication is 
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also useful to allocate complex systems components to 

computational clusters, assuming that load balancing 

will be handled locally, at the local clusters. 

 

3.2. Communication Templates for Complex 

Systems Simulations 

Our approach here is to study the interaction topology 

of complex systems simulations in isolation, in an 

attempt to classify frequently occurring cases into 

communication templates. Each identified template can 

then be accompanied by template implementations and 

usage advices, based on the classic parallel and 

distributed computing literature. The general idea here 

is that complex system modelers can (i) first identify the 

communication class their models belong to, and then 

(ii) “fill in” one of the implemented simulation 

templates provided with their model-specific details. 

This way, they might not achieve the most efficient 

distributed implementation of their models, but their 

implementation efforts will be significantly lowered. 

 We first point out two extreme cases. In the first 

scenario, dependencies among components are 

completely random (e.g., from a uniform random 

distribution) and change regularly in time (e.g., 

dependencies are re-sampled prior to each update). The 

second special case is when no communication occurs 

among complex systems components. One might argue 

that these are “useless” or “hopeless” examples, and 

that a collection of components like in our second 

example is hardly a system at all. However, we believe 

this is but a question of level of abstraction. In the first 

scenario, which is not as uncommon as it may seem, 

there is hardly a better advice regarding a distributed 

implementation than relying on a distributed parameter 

space search. Which is just an example of our second 

scenario: the individual simulation runs can be viewed 

as non-interacting components. On the other hand, more 

sophisticated parameter space search methods introduce 

dependencies among individual runs, by determining 

the next parameter combinations to explore based on 

results collected earlier (i.e., sampling in the more 

turbulent parameter regions, etc.). In this case, the 

parameter space search becomes a non-trivial complex 

system again, worthy of dependency analysis on its 

own.  

 Dealing with more complex cases, our first 

observation is that static communication patterns allow 

for the direct application of distribution algorithms. 

Therefore we will handle these cases separately from 

the dynamic topologies.  

 Next, we point out that the dependencies of the 

update functions may be dependent on the components’ 

states. In many cases, the components’ state information 

can be projected to a metric space and update 

dependencies correlate with distance in this space. For 

example, if components are agents moving in a space 

(in computational models often on a two-dimensional 

lattice) then, each agent’s state will (among possibly 

other things) include the coordinates of the agent. If in 

the model the agents interact only with the agents in 

their vicinity, then the update dependencies of the 

components will be thus distance-dependent. This 

spatial property of a complex systems simulation, if 

present, may be successfully exploited in determining 

the partitions of a distributed implementation. It is 

worth noting, however, that complex systems may have 

such a spatial property implicitly. For example, a social 

system where people are likely to interact with like-

minded partners may have this property where the 

natural metric space is an abstract similarity space.  

 

Table 1. Categorization of the Various Communication 

Templates 

 
 Based on the observations above, we propose 5+1 

communication templates that, as we believe, are the 

commonly occurring classes of complex systems 

simulations.  

 Certainly, it would be possible to identify many 

more, or to refine this classification by dividing some of 

the templates proposed here. However, we believe these 

5+1 patterns
1
 are applicable (see Table 1), to a varying 

extent, a large majority of complex systems simulations, 

and that useful advices can be formulated for each of 

them.  
 Template0 (T0) of our classification is the case 

where no interaction occurs among components. Here 

the components’ partitioning is only constrained by load 

balancing considerations.  

 Template5 (T5), the other extreme, is the case with 

random or unpredictable interaction among 

components, for which we suggest ‘to step one level up’ 

and the implementation of a distributed parameter 

search as in Template0. The four remaining cases are 

created at the intersection of the spatial/non-spatial and 

static/dynamic properties.  

                                                           
1
 We identify 6 communication topologies (or 

templates), but since for the two extreme cases (T0 and 

T5) our proposed technical solution is very similar, 

albeit for different reasons, we prefer to talk about 5+1 

templates. 
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 Template1 (T1) (Static Networks) describes a non-

spatial system with a static communication pattern. It is 

assumed that the exact communication pattern can be 

extracted from the system, or that it is defined 

explicitly. To the thus defined communication graph a 

variety of graph partitioning algorithms can be applied.  

(Fjällström, 1998) 

 Template2 (T2) (Dynamic Networks) introduces 

dynamism in Template1. The assumption about the 

existence of a communication graph is maintained, but, 

in contrast to Template5, it is assumed that the changes 

and their frequency are defined by a graph transition 

function that provides enough information on the 

system’s efficient distribution. (Sometimes, it may be 

sufficient to know that the level of change in the 

communication graph is low, such that it is sufficient to 

re-partition nodes at every 10000 time steps, or so.) The 

implementation approach we propose for such systems 

is the regular application of classic graph repartitioning 

algorithms (i.e., graph partitioning algorithms that 

attempt to improve on an existing partition). (Barnard 

and Simon, 1993) Please also note, however, that in the 

limiting case, Template2 leads to Template5.  

 Template3 (T3) (Static Spatial Systems) moves 

away from Template1 along the other axis. It maintains 

the assumption about a static communication pattern, 

but requires the spatial property. Prime examples of 

such systems are cellular automata. Template3 is the 

pattern most prone to a distributed implementation, 

most of which can be derived from methods and 

algorithms developed for distributed cellular automata 

implementations. (Mazzariol et al, 2000)( Maniatty et 

al, 1998) 

 

  

Fig. 1. The Pages from the Distributed Parameter 

Sweep Wizard for Repast 

 

 Finally, Template4 (T4) (Dynamic Spatial 

Systems) assumes a spatial system, in which the 

communication pattern evolves over time. One example 

of such system is the above discussed case when agents 

move in space and communicate with those in their 

vicinity. For the distribution of complex systems 

belonging to this template, we point to algorithms 

specially developed for such systems, using buffering 

and messaging solutions and ways of predicting the 

speed of spatial movement. (Scheutz and Schermerhorn, 

2005)(Gilbert et al, 2006) (The latter may be used to 

predict the next time communication among partitions 

or repartitioning becomes necessary.) It is worth 

pointing out that the fundamental assumption of this 

template and thus a key to the successful 

implementation of these solutions is that changes in 

spatial positions are slow relative to the frequency of 

state updates. 

 

3.3. Implementation Status 

Above we have categorized complex systems 

simulations into 5+1 classes, based on their internal 

communication structure. These communication 

templates form the base of the simulation templates 

written in Repast that QosCosGrid will provide for 

complex systems modelers. 

 

 
Fig. 2. Screenshot from a Distributed Cellular Automata 

Simulation Implemented with the T3 Simulation 

Template. 

 

The project reported in this paper is work in progress. A 

number of working results are already available. An 

advanced tool for user friendly and extensible parameter 

sweeping (a solution offered for T0 and T5 above) of 

Repast simulations with ProActive was reported in 

(Iványi et al, 2007) and is available from 

http://meme.aitia.ai/. (See Fig. 1.) Furthermore, 

simulation templates for models with complying with 

T1 or T3 were reported in (de Back et al, 2008). (See 

Fig. 2.) The development of simulation templates for T2 

and T4 is an ongoing effort. 

 

4. DISCUSSION AND RELATED WORK 

Distributed programming is almost as old as computer 

science itself. Therefore the problem is graph 

partitioning (which is the theoretical abstraction of 

communication minimization and load balancing) is an 

aged and well-studied problem. (Fjällström , 1998) In 

fact, the simulation templates proposed above for T1-T4 

are all based on decades old algorithms, except for one, 

T4. (Barnard and Simon, 1993) (Hendrickson and 

Leland, 1995)(Karypis and Kumar, 1997)(Ou and 

Ranka, 1997) 

On the other hand, complex systems simulations have 

been implemented for supercomputers for several 

decades now (depending on the exact definition of the 

field). However, these implementations were mostly 

done by professional computer scientists and were 

304



tailored to the particular problem and infrastructure at 

hand. (That is, naturally, the approach to take for the 

most efficient implementation.)   

Over the last decade, the increasing capacity of 

computers and the advent of the agent-based modeling 

approach made possible to describe models in a way 

close to the modeled system. This development opened 

the way for a whole new class of scientists to create and 

study their models without relying on professional 

programmers. However, a distributed implementation 

was so far beyond the reach of these modelers. Work 

only recently started to address this problem. (Chen et 

al, 2008) The simulation templates proposed in this 

paper belong to these novel efforts. They are intended to 

be used as a blueprint by complex systems modelers. 

5. CONCLUSIONS 

This paper reported on an ongoing effort to develop 

templates for distributed simulations on the grid with 

the integration of the Repast and ProActive packages. 

The approach to manage the multi-dimensional 

optimization problem of program partitioning was 

discussed, together with a classification of complex 

systems simulations into 5+1 categories, based on their 

communication structure. These communication 

templates are then used to develop implementation 

schemas for complex systems simulations. 

The general context of is a quasi-opportunistic 

approach (i) to develop a special purpose middleware 

that augments grid systems with supercomputer-like 

properties (number of processing units, temporarily 

static communication channels, etc.), and (ii) to provide 

complex systems modelers with a flexible and easy-to-

approach platform to develop distributed agent-based 

simulations. 
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