
ANALYSIS OF TIME WARP ON A 32,768 PROCESSOR IBM BLUE GENE/L
SUPERCOMPUTER

Akintayo O. Holder(a) and Christopher D. Carothers(b)

(a)(b) Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, U.S.A.

(a)holdea@cs.rpi.edu, (b)chrisc@cs.rpi.edu

ABSTRACT
The aim of our work is to investigate the performance and
overall scalability of an optimistic discrete-event simulator
on a Blue Gene/L supercomputer. We find that strong scal-
ing out to 16,384 processors is possible. In terms of event-
rate, we observed 853 million events per second on 16,384
processors for the PHOLD benchmark. This is 1.5 times
faster than any previously reported PDES synchronization
protocol for PHOLD executing on a Blue Gene/L super-
computer (e.g. conservative, optimistic or hybrid). Addi-
tionally, we observed 2.47 billion events per second for a
PCS telephone network model when executed on 32,768
processors. To the best of our knowledge, this is the first
multi-billion event rate achieved for any Time Warp model
executing on a Blue Gene/L supercomputer.

Keywords: simulation, high performance computing, par-
allel discrete event simulation

1. INTRODUCTION
Time Warp (Jefferson 1985) is a synchronization protocol
that allows a parallel discrete-event simulation to specula-
tively process event computations, but if the synchroniza-
tion mechanism detects an event that has been processed
out of time stamp order (e.g. event causality error) it will
undo or roll back the offending event computations. The
most common technique for realizing rollback is state-saving.
Here, the original value of the state is saved prior to event
execution. Upon rolling back, the state is restored by copy-
ing back the stored value.

In this paper we make two contributions; we demon-
strate that is possible to construct an efficient Time Warp
simulator which achieves linear scalability on the Blue Gene/L
supercomputer out to 16,384 processors and continues to
increase its event rate out to 32,768 processors. We also
demonstrate that a synchronous Global Virtual Time (GVT)

algorithm, which defines a lower bound on any unprocessed
or partially processed event, can scale to 10’s of thousands
of processors.

Rensselaer’s Optimistic Simulation System (ROSS) is
the basis for this experimental performance study. ROSS
was originally a Time Warp simulation engine that was op-
timized for shared memory systems and is based on Geor-
gia Tech Time Warp (GTW) (Carothers, Perumalla and Fu-
jimoto 1999). This version, which we now call ROSS-SM,
has some key features that are important for efficient Time
Warp execution. First, ROSS-SM efficiently manages mem-
ory consumption (Carothers, Perumalla and Fujimoto 1999)
for both forward as well as rolled back event computations.
In particular, pointers to events are used whenever possible
rather than creating duplicate copies. This feature elim-
inates the need for searches when performing event can-
cellation (e.g. direct cancellation (Fujimoto 1989)). Us-
ing reverse computation also reduces the amount of state
saved and has been shown to dramatically improve paral-
lel performance (Carothers, Bauer and Pearce 2000). Fi-
nally, GVT is computed using Fujimoto’s algorithm (Fuji-
moto and Hybinette 1997), an asynchronous algorithm that
uses a shared global flag to signal GVT computation.

The Blue Gene/L is a completely different class of
parallel system. Here, modest computing nodes are con-
nected by a low latency, high bandwidth interconnects, in-
cluding an independent collective network. Broadcast la-
tency is comparable to point to point messaging, making
global reduction efficient. The Blue Gene/L does not al-
low processors to directly access remote memory, but it in-
cludes an efficient message passing framework using MPI
(MPI 1994). Consequently, our challenge is to migrate our
efficient shared-memory implementation into a highly op-
timized message passing system that is capable of scaling
to supercomputing class processor counts.

The following issues are addressed as part of our im-

284

plementation of ROSS on the Blue Gene/L which we call
ROSS-MPI: (i) the sharing of events between processes, (ii)
the impact of remote communication on memory consump-
tion, (iii) the role of global virtual time computation on fos-
sil collection, (iv) identifying unique events and ensuring
stable, deterministic execution.

The remainder of this study is organized as follows: a
brief overview of the IBM Blue Gene/L supercomputer is
provided in Section 2. We then discuss the details of the
ROSS-MPI implementation in Section 3 and present our
synchronous GVT algorithm in Section 3.3. The perfor-
mance results are presented in Section 4. Finally, related
work is discussed in Section 5 with closing remarks in Sec-
tion 6.

2. BLUE GENE/L SUPERCOMPUTER
The Blue Gene/L is an ultra large-scale supercomputer sys-
tem that is capable of having 131,072 processors. The Blue
Gene philosophy is that more powerful processors is not
the answer when it comes to winning the massively paral-
lel scaling war (Adiga et al. 2002). Instead, the Blue Gene
architecture balances the computing power of the processor
against the data delivery speed of the network. This led de-
signers to create smaller, lower power compute nodes (only
27.5 KW per 1024 nodes) consisting of two IBM 32-bit
PowerPCs running at only 700 MHz with a peak memory
per node of 1 GB. A rack of Blue Gene is composed into
1024 nodes consisting of 32 drawers of 32 nodes in each
draw. Additionally, there are specialized I/O nodes that per-
form all file I/O. Nominally there is one I/O node for every
32 compute nodes.

Interconnecting both drawers of nodes and racks are
five specialized primary networks. The first is the point-to-
point network which allows data to be sent between nodes.
This network is a 3-D torus consisting of 12 directional
links with a bandwidth of 175 MB/s each in the + − x,
+ − y and + − z directions. The latency of a point-to-
point message is a function of the distance traveled between
nodes. The 32,768 processor Blue Gene/L used in this
study consists of 16 racks with each rack being a 32x32x1
torus yielding a network of 32x32x16. The max distance is
the sum of half the distance for each direction which is 40
(e.g., 16+16+8) leading to a max delay of 4 µs (i.e., each
hop has a max delay of 100 ns).

In addition to the point-to-point network, there is a
global collective network that enables data collection, re-
duction and redistribution to all nodes (or a subset) with a
latency of 5 µs. As we will see in Section 3.3, this collective
network is critical to Time Warp’s ability to efficiently com-
pute Global Virtual Time (GVT) and re-claim memory. We
observe here that the collective network is able to compute
a global reduction operation across all processors almost as
fast as the single longest 1-way delay of the point-to-point
network. This suggest that any GVT algorithm using the

point-to-point network will not scale as well as using the
collective network.

Next, there is an independent barrier network that is
able to complete a barrier of a full 64K node Blue Gene/L
system in less than 1.5 µs. Finally, there is a separate con-
trol network used to transmit system health information as
well as an Gigabit Ethernet network which provides con-
nectivity between I/O nodes and an external parallel file
system.

For this experimental study, the Blue Gene/L housed
within the Rensselaer Computational Center for Nanotech-
nology Innovations (CCNI) is used. This is a 16 rack Blue
Gene/L system with 8 racks having 512 MB of RAM per
node and the other 8 racks configured with 1 GB of RAM
per node. The IBM XLC C compiler was used for all the
results in this paper. We were able to take full advantage of
the compiler’s peak optimization level as well as architec-
ture specific settings. Our specific compiler options where:
-O5 -qarch=440d -qtune=440.

3. ROSS-MPI IMPLEMENTATION
In the ROSS implementation of the Time Warp protocol,
the processor element (PE) is an abstraction of the physi-
cal processor which we realize as an MPI task. They are
independent processes that have exclusive memory access
and communicate via message passing. Events that are des-
tined for a logical process (LP) on another PE are sent as
MPI messages to the correct task. Each PE owns a number
of LPs and uses a master scheduler to process events in time
stamp order for all LPs assigned to that PE. Under the Time
Warp protocol, models are implemented as parallel applica-
tions where an LP would be a logical thread of execution.
The event handler is executed by the event’s destination LP,
as the LPs are responsible for processing and scheduling
events. The models are built from LPs and events, while
the PEs and KPs are architectural features used by ROSS.
This allows the model to define parallelism independently
of the processor count. The model provides the address-
ing protocol for routing events among LPs and PEs. Next,
because each physical processor has it own memory, re-
mote events are duplicated at the source and destination
PEs. This duplicaton allows us to implement a rollback
that spans across physical processors and separate memory
address spaces. Remote events, and how they are handled
will be important to the performance of ROSS-MPI. Last,
a synchronous GVT algorithm was implemented that ex-
ploits the Blue Gene/L’s collective network to achieve scal-
able performance.

Kernel processes (KPs) (Carothers, Bauer and Pearce
2000) improve the efficiency of fossil collection by aggre-
gating events processed for a group of LPs into a larger
list. ROSS-MPI maps the LPs to the KPs and the KPs to
the PEs, but it is the responsibility of the model to assign
LPs their identifiers. When a PE needs to schedule an event

285

Figure 1: Architecture of a Processor Element (PE)

on another PE, it uses the model’s LP addressing scheme,
which will be described below. Remote events introduce
the need to differentiate among events, so we use age a se-
quence number that uniquely identifies all the events gen-
erated between any pair of LPs. Because the MPI standard
(MPI 1994) guarantees in order delivery of messages, event
arrival order is preserved thus avoiding the complex case of
having to process cancel events prior to the receipt of their
positive event counterpart. This aspect is described in more
detail in Section 3.2.1. Finally, the GVT algorithm emp-
ties the receive buffers and uses collective operations to en-
sure all processor elements agree that there are no transient
events. We define an overflow buffer to be used for receiv-
ing remote events during GVT computation. This overflow
buffer allows GVT computation to proceed when regular
event memory has been exhausted.

3.1. Processor Element Communication
As shown in Figure 1, each MPI task contains a PE data
structure, arrays of LPs and KPs, and a free list of events.
The free list is an allocation of all the events that will be
used over the life of the simulation. ROSS does not allocate
memory during allocation, rather it provides a reference
to an event in the free list. These are distributed equally
among processor elements which should ensure that each
processor performs an equal share of the work. ROSS-MPI
assumes that the model will be well balanced, but better
support for unbalanced models will be available in the fu-
ture. This would include a more general LP to KP mapping
structure, that will allow variance in the number of LPs as-
signed to a KP. We do believe that a balanced model is best
suited for large platforms, like the Blue Gene. However,
we acknowledge the need to support models where LPs are
assigned varying workloads.

ROSS-MPI maps the LPs to KPs, but models may
take advantage of the scheme when defining their LP ad-
dressing scheme. ROSS-MPI ensures that the ith KP is
assigned the ((i− 1)(nlp/nkp) + 1), ((i− 1)(nlp/nkp) +
2)..(i)(nlp/nkp) LPs, where nlp and nkp are the number

of LPs and KPs respectively. Each LP is assigned an ad-
dress that is comprised of an index and a peid, the model
then assigns an lpid. The peid refers to the processor el-
ement that contains the LP, and the index is the location
of the LP in the local array of LPs. The lpid is a unique
identifier that is used by the model. The map_lp_to_pe
function maps the lpid to the peid and the map_lp_
to_local function maps it to the index. We chose to
always compute the address pair consisting of the index
and the peid, as opposed to constructing a table that de-
scribes the mapping or caching the computed results. This
is a space-computation trade-off. A mapping table would
limit the scale of the model that could be executed since
mappings for all the LPs would be retained on each MPI
task and caching would increase complexity of the imple-
mentation. Based on our current performance results, we
have seen no indication that the use of efficient mapping
functions degrades performance.

3.2. Remote Events
Remote events are generated when the source and desti-
nation LPs are not on the same PE. The source LP cre-
ates the remote event and places it on the current event’s
caused_by_me list. The “current event” is the event that
is being processed by the LP during event generation. Next,
the source LP sends the event to the PE that hosts the des-
tination LP. When the destination PE receives an event it
finds the correct destination LP, and inserts the event in the
priority queue. If the source LP needs to rollback, it will
send a remote cancel event that contains a duplicate of the
remote event. ROSS only uses the source LP, destination
LP, time stamp and age to identify the correct event, but
a complete duplicate is sent. The mapping functions are
used by the PEs to find the source and destination LPs of
an event.

When a PE sends a remote event, it uses map_lp_
to_pe to compute the destination peid. The destina-
tion PE, upon receiving a remote event, uses the map_lp_
to_index to find the local LP that corresponds to the
destination lpid. These mapping functions must initial-
ized before the scheduler loop begins as any LP could be
referenced once event processing commences. The model
builder must ensure that all the peid, index pairs are
mapped to lpids.

3.2.1. Augmenting Direct Cancellation
When a remote event or cancel arrives, the PE must be able
to tell if the event is unique or a copy of an existing event.
A remote cancel without the associated event is an error, as
is the duplication of a remote event. With ROSS-SM ev-
ery event is made unique by leveraging shared memory to
perform direct cancellation (Fujimoto 1989). Here, a “can-
cel” message/event is a pointer reference to the actual real

286

Figure 2: Handling concurrent events due to roll back

event, thus making the positive event and the anti-message
the same object. With ROSS-MPI, the PE must search
the priority queue and processed list to cancel a previously
sent remote event. The use of KPs (Carothers, Bauer and
Pearce 2000) allows us to perform a quick linear search of
the processed list. The search of the priority queue, which
is a Splay Tree data structure, is derived from the insert
method which has a complexity of O(log(n)) (Sedgewick
1998). To implement a search we must be able to differ-
entiate among the events in the simulation. Consider the
case shown in Figure 2. Here, a source LP schedules an
event A at time t to a destination LP. The source LP is then
rolled back and it generates an anti-message for event A.
After rollback is complete, the source LP schedules a new
event B at time t on destination LP. When processing the
cancel for A we must be aware that the new event B could
have the same time stamp despite being the “correct” event.
Thus, we need a mechanism to uniquely identify events
that are to be cancelled. To accomplish this, we identify
an event using these four fields: (i) the event’s simulated
time at which it is to be processed recv_ts, (ii) source
lp src_lpid, (iii) destination lp dest_lpid, and (iv)
a sequence number age. Every logical process maintains
an non-decreasing sequence counter, when it generates an
event it assigns the event the current value as its age, and
then increments the counter. This age will be different
for each event generated by a given LP. In the scenario we
discussed, event A and cancel A would have the same age
while B, the newer event, would be different. This happens
because cancels are copies of the original event, and only
new events are given unique ages.

3.2.2. Correctness and efficiency
A remote cancel event is a copy of the original event that
is sent with a different MPI tag. Using a stub event, like
DSIM (Chen and Szymanski 2007), while reducing net-
work traffic, appears to complicate event handling and may
not improve memory efficiency. At the source PE, we fos-
sil collect the remote event when their parent is being col-

lected. We exploit the observation that only the parent has
a reference to the remote event. When fossil collecting,
we check the caused_by_me list and fossil collect all
remote events. This approach allows us to reclaim mem-
ory efficiently and eliminates the need to manage lists of
remote events.

ROSS-MPI retrieves remote events by combining block-
ing receives with non-blocking probes. The non-blocking
probe signals when a remote event is available, but it will
not block if the buffers are empty. The combination gives
us the semantics of non-blocking receives with simpler code
and without the use of expensive MPI operations like mes-
sage cancel. We use the MPI_ANY_TAG to poll both event
types, rather than retrieve events and cancels separately.
This solves the following race condition: if the event and
cancel arrive when the PE is retrieving cancels, the can-
cel, which is processed first, will appear to be unaccom-
panied. By polling both ports and checking the event type
after retrieval the problem is avoided. This solution is de-
pendent on the semantics of MPI point-to-point communi-
cation which guarantees that ”messages are non overtak-
ing” (MPI 1994). The race condition is avoided since an
event/cancel pair is sent between the same two LPs, and a
cancel can only be generated after the initial event.

3.3. GVT algorithm
A consistent cut (Mattern 1994) divides the events into past
and future. Here, no events would be sent from the fu-
ture into the past. If all the processors agree to the cut, the
Global Virtual Time (GVT) is the time stamp of the earliest
event in the present.

Algorithm 1 is a global reduction (Chen and Szyman-
ski 2007) GVT algorithm, it is synchronous and it uses col-
lective operations to create a consistent cut. When the pro-
cessors reach the synchronization point they ensure that all
transient messages are accounted for by performing a col-
lective sum over the count of outstanding messages. Once
all messages are accounted for, the cut is formed and then
the processors perform a collective minimum over their lo-
cal virtual time (LVT) which consists of the minimum of
any event in the priority queue or otherwise awaiting pro-
cessing. The latency of broadcast on the Blue Gene/L makes
a synchronous global reduction GVT algorithm an efficient
choice.

3.3.1. Correctness
A correct GVT algorithm must solve the transient message
and simultaneous reporting problems (Fujimoto and Hybi-
nette 1997). We present arguments that show our algorithm
addresses both problems. A transient message is a message
that is not visible to any processor because it is traversing
the network. The simultaneous reporting problem exists
where both the sender and receiver expect the other to ac-

287

Algorithm 1 GVT Computation algorithm
Require: global message counter, the difference between

events sent and received since last GVT.
Require: local gvt estimate, earliest remote event since the

last GVT.
Ensure: GVT is the minimum of all unprocessed events

message counter = 0
repeat

while incoming messages available do
read(remote event)
decrement global message counter
if local gvt estimate > remote event time stamp
then

local gvt estimate = remote event time stamp
end if
enqueue remote event

end while
MPI Allreduce(global message counter,
message counter, SUM)

until message counter == 0
global message counter = 0
LVT = min(earliest event in priority queue,
earliest unprocessed cancel event)
MPI ReduceAll(LVT,GVT,MIN)

count for the event in their respective notions of local vir-
tual time (LVT).

Transient message, by induction. Basis: Consider the base
case at time 0, no remote events have been created, so the
sum of the differences between the messages sent and re-
ceived is zero. There are no transient messages.

Inductive step: For a given epoch, we increase the
counter for each message and decrease for each reception.
At the end of the epoch the counter is zero. If a transient
message exists, it would be sent during or before the current
epoch. If the transient message was sent during this epoch,
the counter must be negative when we entered the epoch. If
the transient message was sent before, the counter must be
positive when we entered. Since the counter is always zero
when an epoch ends neither is possible.

Simultaneous reporting, by contradiction. Assume the simul-
taneous reporting problem exists. This implies that a PE
must have received the GVT computation request after it
has transmitted the earliest event in the system and the des-
tination PE already responded the GVT request and sent
its LVT before it has received the earliest event. In this
case, each PE believes the other responsible for the inclu-
sion of this earliest event in there LVT calculation. So GVT
is being computed while the event is being transmitted. Our
prior argument shows, there are no messages in-flight when
GVT computation commences.

3.4. Memory Management
Memory management in ROSS-MPI focuses on the impact
of remote events. ROSS-SM is a memory efficient Time
Warp implementation but remote events have the poten-
tial to double memory consumption, as previously noted
in Section 3.2. The pathological cases will always cause
problems, but we take the following steps to manage mem-
ory consumption. First, overflow buffers are allocated for
use when receiving events during GVT computation and,
at the source PE we fossil collect remote events with their
parents.

The overflow buffer is a one time allocation speci-
fied by the model, and is only used when the PE’s free
list has been exhausted. Events allocated from the over-
flow buffer are added to the PE’s free list when deallo-
cated, they are not returned to the overflow buffer. The
number of events allocated to the overflow buffer is defined
by tw_events_gvt_compute. The overflow buffer is
only used for retrieving remote events during GVT com-
putation, and its length should be dependent on the com-
munication pattern of the model. It should be proportional
to number of iterations through the full ROSS-MPI sched-
uler loops which is set by g_tw_gvt_interval, and
the size of the processing batches ,g_tw_mblock. If the
PE’s free list is empty, it will abort the scheduler loop and
begin to compute GVT, and then start fossil collection.

3.5. Eliminating Global Data Structures and
Non-Deterministic Event Processing

In addition to efficiency and correctness, we ensure the sim-
ulator scales well by eliminating global data structures and
globally redundant operations. Instead of a global array
of random number generators, we distributed each random
number generator as part of the LP data structure. The
stream is reversible (Carothers, Perumalla and Fujimoto
1999), allowing the reverse computation to “undo” any pre-
vious calls to the random number generator. The new fields
in the LP data structure are the arrays that contain the seeds
of the random stream and the variables used in sampling
other distributions. The streams are seeded sequentially, so
given the lpid we can calculate how many seeds to skip
and initialize the stream with limited redundant work. A
nice side effect of this data structure design change is that
it co-locates the random number seeds with the LP state
which enables better LP data locality for improved cache
performance during event processing.

We also address the increased probability that two events
may have the same destination LP and time stamp. As dis-
cussed in (Wieland 1997) simulations with running times
that are large compared with the granularity at which events
are scheduled increase the probability that two or more events
will have the same destination LP and time stamp, if not the
same source LP. To ensure deterministic event processing

288

in the face of event simultaneity, the source LP, destina-
tion LP and the age of an event will be considered when
sorting events in priority queue. This allows every event
to be uniquely identified, and ensures the ordering is inde-
pendent of the insertion order. We also rollback when the
new event is equal to or older than the last processed event.
This insures that all events with the same time stamp will
be executed in deterministic order, but at the expense of in-
creased rollbacks. However, because this behaviour occurs
infrequently in real applications, we do not believe over-
all performance is degraded. By rolling back under these
conditions, we must consider the possibility of livelock if
there is a cycle of LPs scheduling events with zero delay.
We do not believe this pathological case to be a reasonable
situation in a model.

4. EXPERIMENTAL RESULTS
PHOLD is a synthetic benchmark, commonly used for test-
ing the performance of Time Warp simulators (Chen and
Szymanski 2005) and (Perumalla 2006). PHOLD has min-
imal event processing, minimal look ahead due to event
scheduling being based on a random distribution and a ran-
dom communication pattern. PHOLD can be configured
by changing the event population and the ratio of remote
events. PHOLD was configured to schedule 10 percent of
events to remote LPs. The simulations had 1024x1024 or
1,048,576 LPs and an initial event population of either 10
or 16 events per LP. The 10 events per LP case and 10 per-
cent remote ratio are comparable with the PHOLD configu-
ration used by Permulla’s performance study in (Perumalla
2007).

The second workload model is a PCS network that
provides wireless communication services for cellular phone
subscribers. Here, the service area of a PCS network is
populated with a set of geographically distributed transmit-
ters/receivers called radio ports. A set of radio channels are
assigned to each radio port, and the users in the coverage
area (or cell for the radio port) can send and receive phone
calls by using these radio channels. When a user moves
from one cell to another during a phone call a hand-off is
said to occur. In this case the PCS network attempts to al-
locate a radio channel in the new cell to allow the phone
call connection to continue. If all channels in the new cell
are busy, then the phone call is forced to terminate. It is
important to engineer the system so that the likelihood of
force termination is very low (e.g., less than 1%). What
is special about this application is that it is an instance of
a class of applications that are self-initiated (Nicol 1991).
Here, LPs typically schedule most of their events to them-
selves, which leads to fewer remote messages relative to
locally scheduled events making this class of applications
well suited for ultra large processor count systems like the
Blue Gene/L. For a detailed explanation of our PCS model,
we refer the reader to (Carothers, Fujimoto and Lin 1995).

The PCS model had a grid of 4096x4096 PCS cells
which results in LPs with a constant configuration except
for the simulated time, which was doubled for the 32,768
processor run.

4.1. PHOLD Performance
Because our access to the Blue Gene/L is limited, we where
only able to perform one run at each processor count con-
figuration. However, as well will demonstrate, the Blue
Gene/L’s performance has very little variation unlike typ-
ical multi-user clusters and thus we believe these single
run performance numbers to be very close to the multi-
run averages. Additionally, the CCNI Blue Gene/L parti-
tions are predefined with the following node counts: 512,
1024, 4096, 8192 and 16384. Thus, in order to maxmi-
ally utlize the processor counts in each available partition
class, we made runs using processor counts of 1024 using a
512 nodes, 2048 using 1024 nodes, 8192 using 4096 nodes,
16,384 using 8192 nodes and 32,768 using 16,384 nodes.

Unlike typical large-scale clusters, the Blue Gene/L
has no virtual memory and does not support a multi-program
environment where OS-level daemons co-exist and com-
pete for resources with user-level compute jobs. Thus, we
found very little variance in performance across multiple
runs. In order to demonstrate repeatable performance, we
used multiple runs on smaller processor partitions. Figure 3
shows the event rate of PHOLD over 10 runs with 2048
processors. The standard deviation of the event rate was
0.05% of the mean, with PCS (not shown) it was 0.01% of
the mean.

Figure 4 shows the aggregate event rate of PHOLD as
a function of processor count. For the 16 events per LP
case, we observed a rate of 43 million events per second
on 1024 processors, which increased to a peak event rate
of 798 million on 16,384 processors. Additionally, we ob-
served an increase in event rate for the 10 events per LP
case. The peak event rate was 853 million. This is about 1.5
times better than the peak rate described by Perumalla (Pe-
rumalla 2007), using any PDES synchronization scheme
(e.g. conservative, optimistic or hybrid) on the same hard-
ware. We believe the increase in performance for the 10
events per LP case is due to lower priority queue overheads
as consequence of the smaller per processor event popula-
tion.

For the 10 events per LP case, the per processor event
rate was 45,000 on 2048 processors and it increased to 52,000
with 16,384 processors. The speedup of PHOLD appears to
be super-linear despite the use of strong scaling. A lack of
available work was a concern given that the 1,048,576 LPs
are spread over 16,384 processors yielding only 64 LPs per
processor. We attribute the super-linear performance to a
decrease in priority queue overheads as the processor count
increases. Recall, we use a Splay Tree data structure for the
priority queue which as both a O(log(n)) complexity for

289

Figure 3: Event Rate for PHOLD across multiple runs on
2048 processors for 16 events per LP .

Figure 4: Event rate for PHOLD for both 10 events per LP
and 16 events per LP as a function of processor count.

enqueue and dequeue operations. As the processor counts
double, the event population per processor goes down by
half, which decreases priority operations by a log(2) factor.

Figure 5 shows the number of rollbacks, primary and
secondary for the 16 events per LP case as a percentage
of committed events. This rollback ratio increased, almost

Figure 5: Primary and secondary rollbacks for PHOLD for
16 events per LP case as a function of processor count.

linearly, with the increase in processor count. Both pri-
mary and secondary rollback ratios appeared to be gradu-
ally increasing, but we only observed a total rollback ratio
of 0.54% with 16,384 processors. These low rollback ra-
tios indicate the processors spend most of their time doing
useful work.

4.2. PCS Performance
Figure 6 shows that our event rate increases almost linearly
to 2 billion events per second on 16,384 process, but be-
yond that the increase is sub-linear. The 25% increase in
performance implies that the per processor event rate fell
by 40% as we increased to 32,768 processors. The peak
event processing rate was 2.47 billion events per second on
32,768 processors. Figure 7 shows that the ratio of roll-
backs is less than 0.06% of the committed events. We do
not believe changes in the ratios are significant as they re-
main low. The performance decrease could due to the size
of the model, or limitations in the Blue Gene/L hardware,
especially the collective network. The longer run for the
32K processor case was not believed to be responsible for
the sharp decrease in per processor event rate. Further in-
vestigation is needed before we fully understand this phe-
nomenon.

5. RELATED WORK
There have been some investigation into the performance
of discrete event simulation on supercomputers with more
than 1000 processors. The performance of conservative,

290

Figure 6: Event rate for PCS Model as a function of pro-
cessor count.

Figure 7: Primary and secondary rollbacks for PCS Model
as a function of processor count.

optimistic and other approaches to PDES on the Blue Gene/L
has been examined (Perumalla 2007). The observed perfor-
mance may have been limited by the use of strong scaling
and limited access to the Blue Gene/L. In a related Blue
Gene Consortium report (Perumalla 2007), they describe
porting the SCATTER road network model, highlighting

the issue of porting existing models. PHOLD and PCS are
well balanced models, we consider load balancing to be be-
yond the scope of this paper, but it would be interesting to
consider problems where this is an issue.

The performance of PDES on a 750 node Alpha server
has also been investigated (Chen and Szymanski 2005).
They were able to process an impressive 228 million events
per second on 1024 processors. Their PHOLD model sched-
ules events at one of the four nearest neighbors, which should
exploit the quad processor SMP nodes while avoiding the
Quadrics network switch. DSIM uses, Time Quantum GVT
(Chen and Szymanski 2007), a manager-worker GVT algo-
rithm which reserves processors as GVT managers. They
estimate that one manager is needed for every 128 proces-
sors, but the approach appears to be scalable.

In the context of GVT algorithms based on hardware-
based acceleration approaches, there been some activity in
the past. Of note, Pancerella and Reynolds (Pancerella and
Reynolds 1993), they present results of simulations that
suggest that hardware assisted, target-specific global reduc-
tions can dramatically improve parallel simulator perfor-
mance. More recently Noronha and Abu-Ghazaleh (Noronha
and Abu-Ghazaleh 2002) has shown the benefits of offload-
ing the GVT computation to network interface cards. How-
ever, here Mattern’s asynchronous GVT algorithm (Mat-
tern 1994) is used as opposed to a synchronous reduction
network-based algorithm.

6. CONCLUSIONS
We demonstrate that it is possible to construct an efficient
optimistic Time Warp simulator which achieves linear scal-
ability on the Blue Gene/L supercomputer, and we were
able to process almost 2 billion events per second on a
16,384 processors for the PCS model. This would indi-
cate that the optimistic approach to PDES has strong scal-
ing potential on the largest scale supercomputers of today.
It also demonstrates that a synchronous GVT computation
algorithm can be used in an efficient Time Warp imple-
mentation provided that the underlying supercomputer ar-
chitecture supports high-performance global collective op-
erations. These results suggest that a synchronous algo-
rithm, which can exploit the presence of a global collec-
tive/reduction network, will outperform a point-to-point so-
lution, especially when scaling to near-petascale supercom-
puter system.

As future work, we plan to compare how the Blue
Gene performs relative to other supercomputer architec-
tures such as Texas Ranger, AMD Quad-Core Opteron Clus-
ter and the Cray XT3 MMP system which are both part of
the TeraGrid (see www.teragrid.org).

291

REFERENCES
Adiga, N.R and et al., 2002. An overview of the Blue

Gene/L Supercomputer. Proceedings of the ACM/IEEE
Conference on Supercomputing, pp. 1–22, November
16–22 Baltimore, Maryland, USA.

Carothers, C.D., Bauer, D. and Pearce, S., 2000. ROSS:
A High-Performance, Low Memory, Modular Time
Warp System, Proceedings of the 14th Workshop on
Parallel and Distributed Simulation, pp. 53–60, May
28 - 31, Bologna, Italy.

Carothers, C.D., Fujimoto, R.M. and Lin, Y-B. 1995. A
case study in simulating PCS networks using Time
Warp. Proceedings of the 9th workshop on Parallel
and Distributed Simulation, pp 87–94, June 13 - 16,
Lake Placid, New York, USA.

Carothers, C. D., Perumalla, K.S., and Fujimoto, R.M.,
1999. Efficient optimistic parallel simulations using
reverse computation. ACM Transactions on Modeling
and Computer Simulation 9(3):224–253.

Chen, G. and Szymanski, B.K., 2005. DSIM: scaling Time
Warp to 1,033 processors. Proceedings of the 37th
conference on Winter simulation, pp 346–355. De-
cember 4-7, Orlando, Florida, USA.

Chen, G. and Szymanski, B.K., 2007. Time quantum GVT:
A scalable computation of the global virtual time in
parallel discrete event simulations. Scalable Comput-
ing: Practice and Experience:Scientific International
Journal for Parallel and Distributed Computing, 8(4):423–
436.

Fujimoto, R.M. and Hybinette. M., 1997. Computing global
virtual time in shared-memory multiprocessors. ACM
Transactions on Modeling and Computer Simulation,
7(4):425–446.

Fujimoto, R.M., 1989. Time Warp on a shared memory
multiprocessor. Transactions of the Society for Com-
puting Simulation International, 6(3):211–239.

Jefferson, D.R., 1985. Virtual time. ACM Transactions on
Programming Language Systems, 7(3):404–425, 1985.

Mattern, F., 1994. Efficient algorithms for distributed snap-
shots and global virtual time approximation. Journal
of Parallel and Distributed Computing, 18(3):423–434.

Message Passing Interface Forum., 1994. MPI: A message-
passing interface standard. Message Passing Interface
Forum. Available from: http://www.mpi-forum.org/
[accessed 16 March 2008]

Noronha, R. and Abu-Ghazaleh, N.B., 2002. Using pro-
grammable nics for Time Warp optimization. Pro-
ceedings of the International Parallel and Distributed
Processing Symposium, April 15-19, Fort Lauderdale,
Florida, USA.

Nicol, D.M., 1991. Performance bounds on parallel self-
initiating discrete-event simulations. ACM Transac-
tions on Modeling and Computer Simulation, 1(1):24–
50.

Pancerella, C. and Reynolds, P.F., 1993. Disseminating
critical target-specific synchronization information in
parallel discrete event simulation. : Proceedings of the
7th Workshop on Parallel and Distributed Simulation,
pp 52–59, May 16 - 19, San Diego, California, USA.

Perumalla, K.S., 2006. Ultra-scale parallel discrete event
applications. Oak Ridge National Laboratory. Avail-
able from: http://www.bgconsortium.org/
[accessed 16 March 2008]

Perumalla, K.S., 2007. Scaling Time Warp-based discrete
event execution to 10**4 processors on a Blue Gene
supercomputer. Proceedings of the 4th international
conference on Computing frontiers, pp 69–76, May 7-
9, Ischia, Italy.

Sedgewick, R., 1998. Algorithms in C. 3rd ed. Boston:Addison-
Wesley

Wieland, F., 1997. The Threshold of Event Simultane-
ity. Proceedings of the Workshop on Parallel and Dis-
tributed Simulation, pp 56–59, June 10 - 13, Locken-
haus, Austria.

AUTHORS BIOGRAPHY
AKINTAYO HOLDER is a Ph.D. student in the Com-
puter Science Department at Rensselaer Polytechnic Insti-
tute. His research interests are parallel and distributed com-
puting.

CHRISTOPHER D. CAROTHERS is an Associate Pro-
fessor in the Computer Science Department at Rensselaer
Polytechnic Institute. He received the Ph.D., M.S., and B.S.
in Computer Science from Georgia Institute of Technology
in 1997, 1996, and 1991, respectively. His research in-
terests include parallel and distributed systems, simulation,
networking, and computer architecture.

292

