
A PARALLEL PROGRAMMING METHODOLOGY USING COMMUNICATION
PATTERNS NAMED CPANS OR COMPOSITION OF PARALLEL OBJECT

M. Rossainz-López(a), M. I. Capel-Tuñón(b)

(a) Universidad Autónoma de Puebla, Avenida. San Claudio y 14 Sur, San Manuel, Puebla,
State of Puebla, 72000, México

(b) Departamento de Lenguajes y Sistemas Informáticos, ETS Ingeniería Informática,
Universidad de Granada, Periodista Daniel Saucedo Aranda s/n,

18071 Granada, Spain

(a)mariorl@siu.buap.mx, (b)mcapel@ugr.es

ABSTRACT
Within an environment of Parallel Objects, an approach
of Structured Parallel Programming and the paradigm of
the Orientation to Objects, shows a programming
method based on High Level Parallel Compositions or
HLPCs (CPANs in Spanish) by means of classes. The
synchronous, asynchronous communication ways and
asynchronous future of the pattern of Parallel Objects
(Rossainz and Capel 2005-2), the predefined patterns of
communication/interaction of the structured approach,
the encapsulation and the abstraction of the Orientation
to Objects, to provide reusability to this patterns,
together with a set of predefined restrictions of
synchronization among processes (maxpar, mutex,
sync) are used. The implementation of the commonly
used communication patterns is explained, by means of
the application of the method, which conform a library
of susceptible classes of being used in applications
within the environment of programming of the C++ and
of the standard POSIX of programming with threads.

Keywords: Parallel Objects, Structured Parallel
Programming, High Performance Computing, Object
Oriented Programming.

1. INTRODUCTION
As it is known, exist infinity of applications that using
machines with a single processor tries to obtain the
maximum performance from a system when solving a
problem; however, when such a system can not provide
the performance that is required (Capel and Troya
1994), a possible solution it consists on opting for
applications, architectures and structures of parallel or
concurrent processing. The parallel processing is
therefore, an alternative to the sequential processing
when the limit of performance of a system is reached. In
the sequential computation a processor only carries out
at the same time an operation, on the contrary of what
happens in the calculation parallel, where several
processors they can cooperate to solve a given problem,
which reduces the time of calculation since several
operations can be carried out simultaneously. From the

practical point of view, today in day is enough justified
carrying out compatible investigations within the area
of the parallel processing and areas related
(Concurrence, Distributed Systems, Systems of Real
Time, etc.), since the recent advance in massively
parallel systems, communications of great band width,
quick processors for the treatment of signs, etc., they
allow this way it. Important part of those investigations
are the parallel algorithms, methodologies and models
of parallel programming that at the moment are
developing. The parallel processing includes many
topics that include to the architectures, algorithms,
languages of programming parallel and different
methods of performance analysis, to mention some of
the most excellent.
The present investigation centers its attention in the
Methods of Structured Parallel Programming, proposing
a new implementation with C++ and the library of
threads POSIX of the programming method based on
the pattern of the High Level Parallel Compositions or
CPANs (Corradi 1995; Danelutto), the which it is based
on the paradigm of Orientation to Objects to solve
problems parallelizable using a class of concurrent
active objects. In this work supply a library of classes
that provides the programmer the
communication/interaction patterns more commonly
used in the parallel programming, in particular, the
pattern of the pipeline, the pattern denominated farm
and the pattern tree of the technique Divide and
Conquer of design of algorithms, well-known as it.

2. MOTIVATION
At the moment the construction of concurrent and
parallel systems has less conditioners every time, since
the existence of systems parallel computation of high
performance, or HPC (High Performance Computing),
more and more affordable, has made possible obtaining
a great efficiency in the processing of data without the
cost is shot; even this way, open problems that motivate
the investigation in this area still exist; in particular,
interest us those that have to do with the parallel
applications that use communication patterns

274

mailto:mariorl@siu.buap.mx
mailto:mcapel@ugr.es

predetermined among their component software. At the
moment are identified as important open problems, at
least, the following ones:
The lack of acceptance of environments of parallel
programming structured to develop applications: the
structured parallelism is a type of parallel programming
based on the use of communication/interaction patterns
(pipelines, farms, trees, etc.) predefined among the
processes of user's application. The patterns also
encapsulate the parallel parts of this application, of such
form that the user only programs the sequential code of
this one. Many proposals of environments exist for the
development of applications and structured parallel
programs, but until the moment, they are only used by a
very limited circle of expert programmers. At the
moment, in HPC, a great interest exists in the
investigation of environments as those previously
mentioned ones.
The necessity to have patterns or high level parallel
compositions: a high level parallel composition or
CPAN, as well as is denominated in (Corradi 1995), it
must be been able to define and to use within an
infrastructure (language or environment1 of
programming) oriented to objects. The components of a
parallel application not interaction in an arbitrary way,
but regular basic patterns follow (Hartley 1998). An
environment of parallel programming must offer its
users a set of components that implement the patterns or
CPANs more used in algorithms and parallel and
distributed applications, such as trees, farms, pipes, etc.
The user, in turn, must can to compose and to nest
CPANs to develop programs and applications. The user
must be limited to a set of predefined CPANs, but
rather, by means of the use of the inheritance
mechanism, he must can to adapt them to his
necessities. The development environment must
contemplate, therefore, the concept of class of parallel
objects. Interest exists in exploring the investigation
line related with the definition of complete sets of
patterns, as well as in its semantic definition, for
concrete classes of parallel applications.
Determination of a complete set of patterns as well as of
their semantics: in this point, the scientific community
doesn't seem to accept in a completely satisfactory way
and with the enough generality none of the solutions
that have been obtained to solve this problem today. It
doesn't seem, therefore, easy the one that can be found a
set the sufficiently useful and general thing, for example
a library of patterns or set of constructos of a
programming language, to be used in the development,
in a structured way, of a parallel application not
specific.

1 One talks about the concept of HPC programming

environment : environment of “friendly” parallel
programming to users that provide facilities for the
development of applications, abstracting details of low level
as the referred ones to the creation, allocation, coordination
and communication of the processes in a distributed and
parallel system.

Adoption of a approach oriented to objects: Integrating
a set of classes within an infrastructure oriented to
objects is a possible solution to the problem described
in the previous point, since would allow adding new
patterns to an incomplete initial set by means of the
subclasses definition. Therefore, one of the lines of
followed investigation has been finding representations
of parallel patterns as classes, starting from which
instance parallel objects is been able to (CPANs) that
are, in turn, executed as consequence from an external
petition of service to this objects and coming from
user's application. For example, the derived pattern of
the execution for stages of the processes would come
defined by pattern's denominated pipeline class; the
number of stages and the sequential code of each
specific stage would not be established until the creation
of a parallel object of this class; the data to process and
the results would be obtained of user's application; the
internal storage in the stages could adapt in a subclass
that inherits of pipeline. Several advantages are
obtained when following a approach oriented to objects
(Corradi and Leonardi 1991), regarding a approach only
based on skeletons algorithmic and programs model
(Hartley 1998), it is necessary to point out, for example,
the following improvements:
Uniformity: All the entities within the programming
environment are objects.
Genericity: The capacity to generate references
dynamically, within an environment of software
development oriented to objects, makes possible the
creation of generic patterns, by means of the definition
of its components as generic references to objects.
Reusability: The inheritance mechanism simplifies the
definition of specialized parallel patterns. The
inheritance applied to the behavior of a concurrent
object helps in the specification of the parallel behavior
of a pattern.

3. EXPOSITION OF THE PROBLEM
From the work carried out to obtain the investigating
sufficiency presented in Julio 1999, redefining and
modernizing the investigation, the problem to solve is
defining a Parallel Programming Method based on High
Level Parallel Compositions (CPANS) (Corradi 1995).
For it the following properties have considered as
indispensable requirements that should be kept in mind
for the good development of this investigation. It is
required, in principle, a environment of Programming
Oriented to Objects that it provides: Capacity of
invocation of methods of the objects that contemplates
the asynchronous communication ways and
asynchronous future. The asynchronous way doesn't
force to wait the client's result that invokes a method of
an object. The asynchronous future communication way
makes the client to wait only when needs the result in a
future instant of her execution. Both communication
ways allow a client to continue being executed
concurrently with the execution of the method
(parallelism inter-objects).

275

The objects must can to have internal parallelism. A
mechanism of threads it must allow to an object to serve
several invocations of their methods concurrently
(parallelism intra-objects).
Availability of synchronization mechanisms when
parallel petitions of service take place. It is necessary so
that the objects can negotiate several execution flows
concurrently and, at the same time, to guarantee the
consistency of their data.
Availability of flexible mechanisms of control of types.
The capacity must be had of associating types
dynamically to the parameters of the methods of the
objects. It is needed that the system can negotiate types
of generic data, since the CPANs only defines the
parallel part of an interaction pattern, therefore, they
must can to adapt to the different classes of possible
components of the pattern.
Transparency of distribution of parallel applications. It
must provide the transport of the applications from a
system centralized to a distributed system without the
user's code is affected. The classes must maintain their
properties, independently of the environment of
execution of the objects of the applications.
Performance. This is always the most important
parameter to consider when one makes a new proposal
of development environment for parallel applications. A
approach based on patterns as classes and parallel
objects must solve the denominated problem PPP
(Programmability, Portability, Performance) so that it is
considered an excellent approach to the search of
solutions to the outlined problems.
The environment of programming oriented to Objects
that it has been considered as suitable to cover the 6
previously mentioned properties is the programming
language C++, together with the use of the standard
POSIX Thread, having as base the operating system
Linux, in particular the system Red Hat 7.0.

4. SCIENTIFIC OBJETIVES OF INTEREST
The development of a programming method is based on
High Level Parallel Compositions or CPANs that
implement a library of classes of utility in the
Programming Concurrent/Parallel Oriented to Objects
(Rossainz 2005). The method must provide the
programmer the commonly used parallel patterns of
communication, in such a way that this can exploit the
generalization mechanisms for inheritance and
parametrization to define new patterns according to the
pattern of the CPAN. The specific objectives to reach in
this work are:
• To develop a programming method based on High

Level Parallel Compositions or CPANs
• To develop a library of classes of Parallel Objects

(Rossainz and Capel 2005-2) that provides the user
the patterns (under the pattern of the CPAN) more
commonly used for the parallel programming.

• To offer this library to the programmer so that, with
minimum knowledge of Parallelism and
Concurrence, it can exploit them, by means of the
use of different reusability mechanisms, under the

paradigm of the Orientation to Objects and she/he
can, also, to define own patterns, adapted to the
communication structure among the processes of
their applications.

• Transform known algorithms that solve sequential
problems (and that they can be easily parallelizable)
in their version parallel/concurrent to prove the
methodology and the component software developed
work presently.

5. HIGH LEVEL PARALLEL COMPOSITIONS

OR CPANS
Some of the problems of the environments of parallel
programming it is that of their acceptance for the users,
which depends that they can offer complete expressions
of the behavior of the parallel programs that are built
with this environments (Corradi 1995). At the moment
in the systems oriented to objects, the programming
environments based on parallel objects are only known
by the scientific community dedicated to the study of
the Concurrence.
A first approach that tries to attack this problem it is to
try to make the user to develop his programs according
to a style of sequential programming and, helped of a
system or specific environment, this can produce his
parallel tally. However, intrinsic implementation
difficulties exist to the definition of the formal
semantics of the programming languages that impede
the automatic parallelization without the user's
participation, for what the problem of generating
parallelism in an automatic way for a general
application continues being open.
A promising approach alternative that is the one that is
adopted in the present investigation to reach the
outlined objectives, is the denominated structured
parallelism. In general the parallel applications follow
predetermined patterns of execution. These
communication patterns are rarely arbitrary and not
structured in their logic (Brinch Hansen 1993). The
High Level Parallel Compositions or CPANs are
patterns parallel defined and logically structured that,
once identified in terms of their components and of their
communication, they can be taken to the practice and to
be available as abstractions of high level in the user's
applications within an environment or programming
environment, in this case the one of the orientation to
objects. The structures of interconnection of more
common processors as the pipelines, the farms and the
trees can be built using CPANs, within the environment
of work of the Parallel Objects that is the one used to
detail the structure of the implementation of a CPAN.

5.1. The Structured Parallelism.
A approach structured for the parallel programming is
based on the use of communication/interaction patterns
(pipelines, farms, trees, etc.) predefined among the
processes of user's application. In such a situation, the
approach of the structured parallelism provides the
interaction pattern's abstraction and it describes

276

applications through CPANs able to already implement
the patterns mentioned.
The encapsulation of a CPAN should follow the
modularity principle and it should provide a base to
obtain an effective reusability of the parallel behavior
that is implemented. When it is possible to make this, a
generic parallel pattern is made, which provides a
possible implementation of the interaction among the
processes, independent of the functionality of these.
The approach structured for the parallel programming in
the last years has followed two ways basically:
1. The enrichment of traditional parallel environments

with libraries of “skeletons” (Darlington 1999) of
programs that concrete communication patterns
represent.

2. The definition of restrictive and closed parallel
languages that provide communication in terms of
the patterns that are already defined in the system
(Bacci 1999).

The approach presented here assists to the first way to
consider it more generic and more open. What thinks
about now is that, instead of programming a concurrent
application from the beginning and of controlling the
creation of the processes so much as that of the
communications among them, the user simply identifies
the CPANs that implement the patterns adapted for the
necessities of communication of his application and it
uses with the sequential code that implements the
computations that individually carry out their processes.
They can be identified of way informal several
significant parallel patterns of interconnection and
reusable in multiple applications and parallel
algorithms, but an agreement doesn't exist the
sufficiently general thing that allows to define its
semantic ones formally (Corradi 1995). For example,
the patron farm is a concept that can be understood by
most of its general possible users of a formal one, but
its concretion in a particular application she/he forces
these to choose among different strategies for its
implementation.

5.2. The Object-Oriented.
Sometimes the consent lack in the semantics of the
parallel patterns makes that its definition is usually
complex and that this is only given at a low level of its
implementation; therefore, it is forced the users to go
into details of the architecture of the system when they
are tried to use the patterns in a concrete program.
However, in an environment of development of
expandable software, as it is it the one from the object-
oriented, the programmer can end up defining any
parallel pattern that needs, via a language of high level
or graphic tool that it supports the paradigm, adapting it,
later on to the characteristics of a concrete application
by means of the inheritance mechanisms and genericity.
The basic characteristic of these systems is the
definition of independent modules of the context that
can be connected to each other via channels of
communication of high level. The obtaining of parallel
compositions represents communication patterns then

statically certain and that they can be built
independently of the context and in modules reusable,
providing this way the encapsulation of the parallel
behavior and the capacity of anidation of modules. The
basic idea is to define to the CPANs as objects in charge
of to control and to coordinate the execution of its
components interns. Under this premise you can create
an environment of expandable development, based on
CPANs that provides characteristic as important as they
can be: uniformity, generality and reusability2.

5.3. Definition of the pattern CPAN.
The basic idea is the one of implementing any type of
parallel patterns of communication between the
processes of an application or distributed/parallel
algorithm as classes, following the paradigm from the
Orientation to Objects. Starting from this classes, an
object can be instanced and the execution of a method
of the object in question you can carry out through a
petition of service. A CPAN comes from the
composition of a set of objects of three types (Rossainz
and Capel 2005-2):
An object manager (Figure.1) that it represents the
CPAN in itself and makes of him an encapsulated
abstraction that it hides their internal structure. The
manager controls the references of a set of objects (a
denominated object Collector and several denominated
objects Stage) that represent the components of the
CPAN and whose execution is carried out in parallel
and it should be coordinated by the own manager.

Figure 1: Component MANAGER of model CPAN

The objects Stage (Figure.2) that are objects of specific
purpose, in charge of encapsulating an interface type
client-server that settles down between the manager and
the objects slaves (objects that are not actively
participative in the composition of the CPAN, but rather
they are considered external entities that contain the
sequential algorithm that constitutes the solution of a
given problem), as well as providing the necessary
connection among them to implement the
communication pattern's semantics that seeks to be
defined. In other words, each stage should act in parallel
as a node of the graph that represents to the pattern. A
stage can be directly connected to the manager y/o to

2 For more details on these characteristics, to see section 2 of

the present document

277

other component stage depending on the pattern
peculiar of the implemented CPAN.

Figure 2: Component Stage of model CPAN and its associated
slave object.

And an object Collector (Figure.3) that it is an object in
charge of storing in parallel the results that he receives
of the objects stage that has connected. That is to say,
during the service of a petition, the control flow within
the stages of a CPAN depends on the implemented
communication pattern. When the composition
concludes its execution, the result doesn't return to the
manager directly, but rather an instance of the class
Collector takes charge of storing this results and of
sending them to the manager, which will send to the
exterior the results, (that, in turn, send him an object
collector), as soon as they go him arriving, without
necessity of to wait to that all the results have been
obtained.

Figure 3: Component Collector of model CPAN

5.3.1. Composition of the CPAN.
If we observe the scheme as a black box, the graphic
diagram of the representation of a CPAN would be the
one that is shown in Figure.4.

Figure 4: Graphical representation of a CPAN as black

box

In summary, a CPAN is composed of an object manager
that it represents the CPAN in itself, some objects stage
and an object of the class Collector, for each petition
that should be treated within the CPAN. Also, for each
stage, an object slave will be taken charge of the
implementation of the necessary functionalities to solve
the sequential version of the problem that you pretend
to solve (Figure.5).

Figure 5: Internal structure of a CPAN. Composition of its

components

The Figure.5 shows the pattern CPAN in general,
without defining any explicit parallel communication
pattern. The box that includes to the components,
represents the encapsulated CPAN, the internal boxes
represent compound objects (collector, manager and
objects stages), as long as the circles are the objects
slaves associated to the stages. The continuous lines
within the CPAN suppose that at least a connection
should exist between the manager and some of the
component stage. The same thing happens between the
stages and the collector. The dotted lines mean that it
can have more than a connection among the
components.

5.3.2. The CPAN seen as composition of parallel

objects.
The objects manager, collector and stages are included
within the definition of Parallel Object (PO) (Corradi
1995).
The Parallel Objects are active objects, that is to say,
objects that have execution capacity in themselves. The
applications within the pattern PO can exploit the
parallelism so much among objects (inter-object) as the
internal parallelism of them (intra-object). An object PO
has a similar structure to that of an object in Smalltalk3,
but it also includes a politics of scheduling, determined
a priori that specifies the form of synchronizing an or
more operations of a class in parallel. The
synchronization policies are expressed in terms of
restrictions; for example, the mutual exclusion in
processes readers/writers or the maximum parallelism in
processes writers. All the parallel objects derive then of
the classic definition of “class” more the incorporation
of the synchronization restrictions (mutual exclusion
and maximum parallelism). The objects of oneself class
shares the same specification contained in the class of

3 An Object in Smalltalk as in C++ is constituted up of a state

and a behavior.

Slave
Object

Problem to
solve

CPAN

User

Slave
Object

Slave
ObjectFinal solution of

the given problem

278

which you/they are instantiates. The inheritance allows
deriving a new specification of one that already exists.
The parallel objects support multiple inheritances.

5.3.2.1 Types of communication in the parallel

objects.
The parallel objects define 3 communication ways: the
synchronous communication way, the asynchronous
communication way and the asynchronous future
communication way.
1. The synchronous way stops the client's activity until

the object active server gives him the answer. The
notation4:
ref_obj.name_meth([lista_param]) it
facilitates their use in the programming of
applications.

2. The asynchronous way doesn't force the wait in the
client's activity; the client simply sends the petition
to the object active server and her execution
continues. Its use in the programming of applications
is also easy, because it is only necessary to create a
thread and to throw it for its execution5. We will use
the following notation to refer to this communication
way: Thread
ref_obj.name_meth([lista_param]); where
Thread is thrown to execute the method
name_meth([lista_param]) of an object
ref_obj.

3. The asynchronous future way makes only wait the
client's activity when, within its code, the result of
the method is needed to evaluate an expression. Their
use is also simple, although its implementation
requires of a special care to get a constructo with the
wanted semantics. The notation used for it will be it:
FutureType futureVar =
ref_Obj.name([lista_param]) that expresses
the generation and future assignment of the result of
a function invoked through a reference to an object.
Where FutureType is the type that defines the
future and Anytype ResulVar =
ref_Obj.futureVar; it is used for the conversion
of type of the future that returns the function when it
is executed to a type AnyType. The word
ANYTYPE is used to suggest the use of “any type”,
the one that is of interest for the user.

The asynchronous and asynchronous future
communication ways carry out the parallelism inter-
objects executing the objects client and server at the
same time.

5.3.3. Definition of the classes bases of a CPAN

anyone.
As it has already been described, a CPAN comes from
the composition of a set of objects of three types. In

4 The notations used in this section are based on the grammar

of Parallel Objects described in appendix A.
5 The POSIX Thread provides the instruction pthread_create(.

. .) along with the type pthread_t for the creation and use of
threads.

particular, each CPAN this compound for an object
manager, some objects stage and an object collector for
each petition carried out by the objects clients of the
CPAN. Also, for each stage of the CPAN, an object
slave will be taken charge of the implementation of the
sequential part of the computation that is sought to carry
out in the application or in the distributed and parallel
algorithm. In PO the necessary basic classes to define
objects manager, collector, stages and to compose a
CPAN are:
• the abstract class ComponentManager
• the abstract class ComponentStage
• the concrete class ComponentCollector
An instance PO of a concrete class derived of the class
ComponentManager represents a CPAN within an
application (called manager) programmed according to
the pattern of parallel object. The instances (called
stages) of a concrete class derived of the class
ComponentStage is connected to each other, to
implement the stages composition. Each stage
commands the execution of an object PO, called slave
(slave) that is controlled by the own stage.
The creation of the stages and of the collectors and their
later interactions are managed transparently to the code
of the application by the manager. From the point of
view of an user already interested in reuse the parallel
behavior defined in some classes CPAN, the class of
interest will be that of the manager. When an user is
interested in using a CPAN within an application, he
has to create an instance of a class manager specific, it
is, one that implements the parallel behavior needed by
the application and that it initializes it with the reference
to the objects slaves that will be controlled by each
stage and the name of the requested method. The
following syntactic definitions have been written using
the grammar free of context that is in the appendix A of
the present document.

5.3.4. The Synchronization restrictions MaxPar,

Mutex y Sync:
It is necessary having synchronization mechanisms,
when parallel petitions of service take place in a CPAN,
so that the objects that conform it can negotiate several
execution flows concurrently and, at the same time,
guarantee the consistency in the data that are
processing. Within any CPAN the restrictions
MAXPAR (The maximum parallelism or MaxPar is the
maximum number of processes that you/they can be
executed at the same time), MUTEX (The restriction of
synchronization mutex carries out a mutual exclusion
among processes that want to consent to a shared object.
The mutex preserves critical sections of code and
obtains exclusive access to the resources) and SYNC
(The restriction SYNC is not more than a
synchronization of the type producer/consumer of
utility) can be used for the correct programming of their
methods.

279

6. DESIGN AND CONSTRUCTION OF THE
CPANS FARM, PIPE Y TREEDV

With the basic set of classes of the model of
programming of PO they are possible to be constructed
concrete CPANs. To build a CPAN, first it should be
had clear the parallel behavior that one needs to
implement, so that the CPAN in itself is this pattern.
Several parallel patterns of interaction exist as are the
farms, the pipes, the trees, the cubes, the meshes, the
matrix of processes, etc.
Once identified the parallel behavior, the second step
consists on elaborating a graphic of its representation as
mere technique of informal design of what will be later
on the parallel processing of the objective system; it is
also good to illustrate its general characteristics, etc.,
and it will allow later to define its representation with
CPANs, following the pattern proposed in the previous
section.
When the model of a CPAN is already had concretized,
that defines a specific parallel pattern; say for example,
a tree, or some of those previously mentioned ones, the
following step would be to carry out its syntactic
definition and semantics.
Finally, the syntactic definition previous to a CPAN
programmed is translated in the most appropriate
programming environment for its parallel
implementation. It would be verified that the resulting
semantics is the correct one, it would be proven with
several different examples to demonstrate its genericity
and the performance of the applications would be
observed that include it as a component software.
The parallel patterns worked in the present investigation
have been the pipeline, the farm and the treeDV6 to be a
significant set of reusable patterns in multiple
applications and algorithms. Being used at the moment
with different purposes, in different areas and with
different applications according to the literature that
there is on the topic.
1. The pipeline, this compound for a set of

interconnected states one after another. The
information follows a flow from a state to another.

2. The farm, is composed of a set of worker processes
and a controller. The workers are executed in parallel
until reaching a common objective. The controller is
the one in charge of distributing the work and of
controlling the progress of the global calculation.

3. In the treeDV, the information flows from the root
toward the leaves or vice versa. The nodes that are in
the same level in the tree are executed in parallel
making use of the denominated technique of design
of algorithms it Divide and Conquer for the solution
of the problem.

These parallel patterns conform the library of classes
proposed within the pattern of the CPAN.

6 The pattern treeDV implements the paradigm of

programming of divide and conquer by means of the use of
binary trees.

6.1 The Cpan PipeLine.
It is presented the technique of the parallel processing
of the pipeline as a High Level Parallel Composition or
CPAN, applicable to a wide range of problems that
you/they are partially sequential in their nature. The
CPAN Pipe guarantees the parallelization of sequential
code using the patron PipeLine.
The Figure.6 represent the parallel pattern of
communication Pipeline as a CPAN.

Figure 6: The CPAN of a Pipeline

The objects stage_i and Manager of the graphic pattern
of the CpanPipe are instances of concrete classes that
inherit the characteristics of the classes
ComponentManager and ComponentStage.

6.2 The CPAN Farm.
It is shown the technique of the parallel processing of
the FARM as a High Level Parallel Composition or
CPAN.
The representation of parallel pattern FARM as a CPAN
is show in Figure. 7.

Figure 7: The Cpan of a Farm

The same as in the previous pattern, the objects
Manager and stage_i are respectively instances of the
classes that inherit of the classes base denominated
ComponenManager and ComponentStage.

6.3 The Cpan TreeDV.
Finally, the programming technique is presented it
Divide and Conquer as a CPAN, applicable to a wide
range of problems that can be parallelizable within this
scheme.
The representation of the patron tree that defines the
technique of it Divide and Conquer as CPAN has their
model represented in Figure. 8.

280

Figure 8: The Cpan of a TreeDV

Contrary to the previous models, where the objects
slaves were predetermined outside of the pattern CPAN,
in this model an object slave is only predefined
statically and associated to the first stage of the tree.
The following objects slaves will be created internally
by the own stages in a dynamic way, because the levels
of the tree depend from the problem to solve and a
priori the number of nodes that can have the tree is not
known, neither its level of depth.
These constitute a significant set of reusable
communication patterns in multiple parallel applications
and algorithms. See (Capel and Rossainz 2004;
Rossainz 2005) for details.

7. USE OF A CPAN WITHIN AN APPLICATION
Once implemented the CPANs of interest, the way in
that you/they are used in user's application is the
following one:
1. It will be necessary to create an instance of the class

manager of interest, that is to say, one that
implements the required parallel behavior in
agreement with the following steps:

1.1. To initialize the instance with the reference to
the objects slaves that will be controlled by
each stage and the name of the method
requested as an association of even
(slave_obj, associated_method).

1.2. The internal stages is created (using the
operation init()) and they are passed each one
an association (slave_obj, associated_method)
that will use invoking the associated_method
on their slave object.

2. The user asks the manager to begin a calculation
through the execution within the CPAN of the
method execution(). This execution is carried out as
it continues:

2.1. The object collector is created with respect to
the petition.

2.2. They are passed to the stages the input data
(without verification of types) and the
reference to the collector.

2.3. The results are obtained from the object
collector.

2.4. The collector returns the results again to the
exterior without verification of types.

3. An object manager has been created and initialized
and some execution petitions can be dispatched in
parallel.

8. RESULTS OBTAINED
Some CPANs adapt better to the communication
structure of a given algorithm than others, therefore
yielding different speedups of the whole parallel
application. The way in which it must be used to build a
complete parallel application is detailed below.
1. It is necessary to create an instance of the adequate

class manager, that is to say, a specialized instance
(this involves the use of inheritance and generic
instantiation) implementing the required parallel
behavior of the final manager object. This is
performed by following the steps:
1.1. Instance initialization from the class manager,

including the information, given as associations of
pairs (slave_obj, associated_method); the first
element is a reference to the slave object being
controlled by each stage and the second one is the
name of its callable method.

1.2. The internal stages are created (by using the
operation init()) and, for each one, the association
(slave_obj, associated_method) is passed to. The
second element is needed to invoke the
associated_method on the slave object.

2. The user asks the manager to start a calculation by
invoking the execution () method of a given CPAN.
This execution is carried out as it follows:
2.1. a collector object is created for satisfying this

petition;
2.2. input data are passed to the stages (without any

verification of types) and a reference to the
collector;

2.3. results are obtained from the object collector;
2.4. The collector returns the results to the exterior

without type verification.
3. An object manager will have been created and

initialized and some execution petitions can then start
to be dispatched in parallel.

We carried out a Speedup analysis of the Farm, Pipe
and TreeDV CPANs for several algorithms in an Origin
2000 Silicon Graphics Parallel System (with 64
processors) located at the European Center for
Parallelism in Barcelona (Spain) this analysis is
discussed below.
Assuming that we want to sort an array of data, some
CPANs will adapt better to communication structure of
a Quicksort algorithm than others. These different
parallel implementations of the same sequential
algorithm will therefore yield different speedups. The
program is structured of six set of classes instantiated

281

from the CPANs in the library High Level Parallel
Compositions, which constitute the implementation of
the parallel patterns named Farm, Pipe and TreeDV.
The sets of classes are listed below:
1. The set of the classes base, necessary to build a given

CPAN.
2. The set of the classes that define the abstract data

types needed in the sorting.
3. The set of classes that define the slave objects, which

will be generically instantiated before being used by
the CPANs.

4. The set of classes that define the Cpan Farm.
5. The set of classes that define the Cpan Pipe.
6. The set of classes that define the Cpan TreeDV.
This analysis of speedup of the CPANs appears in
Figures 9, 10 and 11. In all cases the implementation
and test of the CPANs Farm, Pipe and TreeDV 50000
integer numbers were randomly generated to load each
CPAN.

Figure 9: Scalability of the Speedup found for the CpanFarm
in 2, 4, 8, 16 and 32 processors

Figure 10: Scalability of the Speedup found for the CpanPipe
in 2, 4, 8, 16 and 32 processors

Figure 11: Scalability of the Speedup found for the
CpanTreeDV in 2, 4, 8, 16 and 32 processors

9. CONCLUSIONS
1. A method of original programming has been

developed based on High Level Parallel
Compositions or CPANs

2. Patterns of communication/interaction have
implemented themselves within the model of the
CPAN commonly used in the parallel and distributed
programming: the Cpan Pipe, the Cpan Farm and the
Cpan TreeDV.

3. The implemented CPANs can be exploited, thanks to
the adoption of the approach oriented to objects
using the different mechanisms of reusability of the
paradigm to define new patterns already using those
built.

4. Well-known algorithms that solve sequential
problems in algorithms parallelizable have
transformed and with them the utility of the method
has been proven and of the component software
developed in the investigation.

5. The CPANs Pipe, Farm and TreeDV conform the
beginning of the library of classes that intends in this
work.

6. The restrictions of synchronization have been
programmed of original form suggested by the model
of the CPAN for their parallel and concurrent
operation: the maximum parallelism (MaxPar), the
mutual exclusion (Mutex) and the synchronization of
communication of processes readers/writers (Sync).

7. Of equal it forms the programming in the
asynchronous future communication way for results
“futures” within the Cpans it has been carried out in
an original way by means of classes.

REFERENCES
Bacci, Danelutto, Pelagatti, Vaneschi, 1999, SklE: A

Heterogeneous Environment for HPC
Applications. Parallel Computing, Volume 25, pp.
1827-52.

Brassard, G., Bratley, P., 1997, Fundamentos de
Algoritmia, Spain, Prentice-Hall.

Brinch Hansen, 1993, Model Programs for
Computational Science: A programming
methodology for multicomputers. Concurrency:
Practice and Experience. Volume 5, Number 5,
407-423.

Brinch Hansen, 1994, SuperPascal- a publication
language for parallel scientific computing.

282

Concurrency: Practice and Experience, Volume 6,
Number 5, 461-483.

Capel, M., Troya, J., M., 1994, An Object-Based Tool
and Methodological Approach for Distributed
Programming. Software Concepts and Tools,
Volume 15, pp. 177-195.

Corradi, A., Leonardi, L., 1991, PO Constraints as tools
to synchronize active objects. Journal Object
Oriented Programming, Volume 10, pp. 42-53.

Corradi, A., Leonardo, L., Zambonelli, F., 1995,
Experiences toward an Object-Oriented Approach
to Structured Parallel Programming. Technical
report no. DEIS-LIA-95-007. Italy.

Danelutto, M., Orlando, S., et al. Parallel Programming
Models Based on Restricted Computation
Structure Approach. Technical Report. Universitá
de Pisa.

Darlington et al, 1993, Parallel Programming Using
Skeleton Functions. PARLE’93, Munich.

Hartley, Stephen J., 1998, Concurrent Programming.
The JAVA Programming Language. New York,
Oxford University Press.

Lavander, Greg R., Kafura, Dennis G., A Polymorphic
Future and First-class Function Type for
Concurrent Object-Oriented Programming.
Journal of Object-Oriented Systems. Available
from: http://www.cs.utewxas.edu-
users/lavender/papers/futures.pdf.

Roosta, Séller, 1999, Parallel Processing and Parallel
Algorithms. Theory and Computation. Springer.

Rossainz, M., 1999, Una Metodología de
Programación Paralela en Java. Technical
Report. Universidad de Granada.

Capel, M., Rossainz, M., 2004. A parallel programming
methodology based on high level parallel
compositions. 14th International Conference on
Electronics, Communications and Computers
IEEE CS press. México.

Rossainz, M., 2005, Una Metodología de
Programación Basada en Composiciones
Paralelas de Alto Nivel (CPANs), PhD
dissertation, Universidad de Granada.

Rossainz, M., Capel, M., 2005-2, An Approach to
Structured Parallel Programming Based on a
Composition of Parallel Objects. XVI Jornadas de
Paralelismo, Granada, Spain, Thomson.

AUTHORS BIOGRAPHY
MARIO ROSSAINZ LOPEZ was
born in Puebla, México and went to the
University of Puebla, where he studied
Sciences of Computation and obtained
his degree in 1994. He works in the
Faculty of Sciences of Computation of

the University of Puebla from the year of 1995 where he
is now in the research group of Software Engineering in
the field of distributed systems. His e-mail address is:
mariorl@siu.buap.mx and his Web-page can be
found at http://www.cs.buap.mx/~mrossainz.

MANUEL I. CAPEL TUÑON was born
in Spain and went to the University of
Granada, where he studied Physics and
obtained the MSC degree in 1982. He
worked in the University of Murcia
before moving in 1989 to the University
of Granada where he is now leading a

research group in the field of Concurrent Systems. His
e-mail address is: mcapel@ugr.es and his Web-page
can be found at http://lsi.ugr.es/~mcapel.

283

http://www.cs.utewxas.edu-users/lavender/papers/futures.pdf
http://www.cs.utewxas.edu-users/lavender/papers/futures.pdf

