
SUBPROBLEM SOLVING AND MACHINE PRIORITIZATION IN THE SHIFTING
BOTTLENECK PROCEDURE FOR WEIGHTED TARDINESS JOB SHOPS

Roland Braune

Institute for Production and Logistics Management
Johannes Kepler University

Altenberger Straße 69
4040 Linz, Austria

roland.braune@jku.at

ABSTRACT
In this paper we perform investigations on the Shifting
Bottleneck Procedure for weighted tardiness job shop
scheduling problems. We propose machine
prioritization rules which explicitly consider the specific
structure of the occurring subproblems and compare
them with conventional criteria. We study their effects
in combination with alternative subproblem solution
methods. Furthermore, we analyze the role of machine
backtracking as an advanced control structure.
Computational results are presented based on a set of
adapted benchmark problems.

Keywords: job shop scheduling, total weighted
tardiness, shifting bottleneck, machine prioritization

1. INTRODUCTION
Job Shop Scheduling (French 1982) involves
sequencing a set of jobs on multiple machines. In the
simplest case, each job is processed on each machine
exactly once, whereby the processing orders (routings)
are predetermined (precedence constraints) and can be
different for each job. A job hence consists of several
operations having fixed processing times assigned to
them. A machine can only process one operation at a
time (capacity / disjunctive constraint) and no
preemption is allowed, i.e. once started, the processing
of an operation cannot be interrupted until it has
finished.

The most common optimization objective in job
shop scheduling is certainly the minimization of the
makespan, i.e. the maximum completion time maxC of
all jobs.

However, other measures are at least that important
and closer to the real world. Those include the number
of tardy jobs, total completion or flow time and total
weighted tardiness (TWT) j jw T∑ which is subject of
investigation in our contribution.

The tardiness jT of a job j with respect to its due
date jd is computed as max(0,)j j jT C d= − , where

jC denotes the completion time of job j .

The associated problem may also include release
times jr for jobs and is denoted as

| |j j jJm r w T∑

in the three-field notation of Graham, Lawler, Lenstra
and Rinnooy Kan (1979).

Contrary to the makespan objective, weighted
tardiness job shops have not attracted much attention in
scheduling research, only a few contributions are
available in this area. Among them are dedicated
priority dispatch rules (Vepsalainen and Morton 1987;
Anderson and Nyirenda 1990), local search based
approaches (Kreipl 2000; de Bontridder 2005) and
genetic algorithms (Mattfeld and Bierwirth 2004). This
paper deals with an additional approach, the so called
Shifting Bottleneck Procedure (SBP), initially proposed
for the minimum makespan problem (Adams, Balas and
Zawack 1988) and later adapted to | |j j jJm r w T∑ by
Pinedo and Singer (1999). We perform a computational
study concerning the application of different
subproblem solution procedures and machine
prioritization rules within the shifting bottleneck
procedure. Comparable studies have been published for

maxC and maxL (maximum lateness) problems
(Holtsclaw and Uzsoy 1996; Demirkol, Mehta and
Uzsoy 1997; Aytug, Kempf and Uzsoy 2002). We
extend these investigations to weighted tardiness job
shops by considering the special characteristics of this
kind of problem. Our paper is organized as follows:

In Section 2 we introduce the Shifting Bottleneck
Procedure for job shop scheduling in general. Sections
3-6 describe its main tasks in the TWT context, with a
special focus on machine prioritization and subproblem
solution. Section 7 gives a brief overview on the
concept of machine backtracking. In Section 8 we
present our experimental results. A conclusion and an
outlook on future research are given in Section 9.

2. SHIFTING BOTTLENECK PROCEDURES

FOR JOB SHOP SCHEDULING
Shifting Bottleneck Procedures belong to the most
popular optimization methods in the area of job shop

27

scheduling. Established in the late 1980s by Adams,
Balas and Zawack (1988), they have been successfully
applied to a wide range of different problem setups both
in theory and practice.

The main idea behind bottleneck scheduling is a
decomposition of a job shop problem into several single
machine problems. The single machine problems are
solved separately, one after the other, always
prioritizing the most critical machine with respect to a
given bottleneck measure. Each single machine solution
is inserted into a partial schedule for the enclosing job
shop problem until all machines have been scheduled.

The procedure is based on the disjunctive graph
representation of the underlying problem. During the
progress of the SBP, the graph represents a partial
solution to the job shop problem. Each time a
subproblem is solved, the resulting sequence on the
associated machine is inserted into the graph by
orienting the (undirected) arcs between the operations
on this machine. Let M be the set of all machines and

0M the set of already scheduled machines. Then we can
describe the flow of the shifting bottleneck procedure
according to Figure 1.

Initialize disjunctive graph G
(all arcs are undirected)

Set M0 = {}

Select bottleneck machine m M \ M0

Solve single machine problem on
machine m and set M0 = M0 {m}

Insert sequence of operations on m into
graph G by orienting arcs

(Optional)
Reoptimize each machine k M0

M0 = M?
no

Stop
yes

Identify subproblems associated with
each machine k M \ M0

Figure 1: Outline of the Shifting Bottleneck Procedure

Given this outline, the following four main tasks

can be identified:

1. Subproblem identification
2. Bottleneck selection (machine prioritization)
3. Subproblem solution
4. Reoptimization

Furthermore, the SBP can be embedded into an
enumeration framework in order to examine different
machine orders and determine the best one (Adams,
Balas and Zawack 1988).

Due to the fact that the graph structure of tardiness
job shops differs considerably from those of makespan
or maximum lateness problems, the tasks subproblem
identification, bottleneck solution and subproblem
solution require a dedicated approach as described by
Pinedo and Singer (1999). In the following sections we
give an overview on the tasks enumerated above in the
context of tardiness job shop scheduling. Particularly
the bottleneck selection and subproblem solution
processes receive specific attention, as they represent
the basis of our investigations.

3. SUBPROBLEM IDENTIFICATION
Consider a tardiness job shop with m machines and n
jobs. In the graph representation of this job shop, there
are n sink nodes, one for each job. When isolating a
single machine scheduling problem (SMSP) from the
graph, each operation in the SMSP has exactly n
different due dates resulting from the longest paths
between the respective operation and the sink nodes.

According to Pinedo and Singer (1999), the single
machine problems can be described as follows: Let
(,)i j be an operation to be scheduled on machine i ,
then k

ijd denotes the (local) due date of operation (,)i j
with respect to job k . Given the completion time ijC of
operation (,)i j , the tardiness of the operation
concerning job k can be computed as

max(,0)k k
ij ij ijT C d= − . Since all jobs on machine i

have to be scheduled, the actual tardiness of job k is
determined as

(,)
max

i

k
iji j N

T
∈

, where iN denotes the set of all

operations on machine i . The total increase in the
objective function given a schedule on machine i is

(,)1

(max)
i

n
k

k iji j Nk

w T
∈

=
∑

Considering delayed precedence constraints
(DPCs) due to potential paths in the graph between
operations on a machine, the single machine
subproblems to be solved can be described as

1 | , | (max)k
j k j j

k

r DPC w T∑

4. BOTTLENECK SELECTION
The selection of a bottleneck machine is an intrinsic
step in the SBP. The definition of a bottleneck is not
unambiguous however. As for the makespan case, there
are many different ways of determining whether a
machine should be prioritized over others (Holtsclaw
and Uzsoy 1996; Aytug, Kempf and Uzsoy 2002). After
a short introduction on the conventional quality based
prioritization, we propose bottleneck selection criteria
which are dedicated to the subproblem structure arising

28

from tardiness job shops. The criteria are based on slack
and problem infeasibility and need to be computed
dynamically in each iteration of the SBP by analyzing
the subproblems of all unscheduled machines.

4.1. Quality
The most common bottleneck selection criterion is
oriented on the solution quality of the subproblems. In
order to determine this measure, subproblems of all
unscheduled machines have to be solved in advance and
their resulting solution quality values are then ranked in
descending order. The machine whose subproblem
yields the highest TWT value is regarded as the
bottleneck and its sequence gets inserted into the graph
(Pinedo and Singer 1999).

4.2. Slack
The main idea behind this criterion is that the
subproblem with the least slack with respect to its due
dates may be regarded as the bottleneck. Due to the
tighter due dates, it is more likely that the problem in
question will increase the overall TWT. We distinguish
two different types of slack: The slack of each operation
with respect to its earliest local due date and the
weighted minimum slack per job.

4.2.1. Earliest Due Date Slack (SLCK)
Consider an SMSP on machine i and let je be the
earliest possible starting time of an operation j . Note
that je is the maximum of the release time jr and the
earliest starting time of the operation due to potential
delayed precedence constraints. Then for each operation
j with processing time jp a slack value can be

computed as
min() ()k

ij ij j jk
slck d e p= − +

4.2.2. Weighted Minimum slack per job (WSLCK)
Contrary to SLCK , we compute the slack values not
for each operation but for each job k of the superior
TWT job shop problem. By this, we can include the job
weights kw into the calculation and therefore provide a
more detailed estimate of the machine’s criticality. The
slack of an operation j regarding due date k

ijd is
defined as

() if is defined

otherwise

k k
ij j j ijk

ij

d e p d
slck

⎧⎪ − +⎪=⎨⎪∞⎪⎩

Since multiple operations may have a (local) due
date regarding a job k , we are interested in the
minimum slack value with respect to k . Additionally
we want to consider job weights, hence we compute

(,)
1/ min ()

i

k k
k iji j N

wslck w slck
∈

=

4.3. Infeasibility
The capacity (disjunctive) constraint stated in Section 1
enforces that no more than one operation at a time is
processed on a machine. However, given time windows
for operations defined by the release time jr and a due

date k
ijd , it may occur that multiple operations require to

be processed on a machine at the same time in order not
to violate the due date(s). Such a situation can be
detected by determining an infeasibility profile for the
respective single machine problem (Aytug, Kempf and
Uzsoy 2002).

We determine an infeasibility profile for the
specific SMSPs described in Section 3 in the following
way: For each operation j we define a time window
ranging from the earliest starting time je to the earliest

due date min()k
ijk

d . The processing time jp is

distributed equally across the length of the time
window, hence we obtain an average required capacity
for any point within the time window.

By cumulating the time windows of all operations
with their required capacities, we can create a capacity
requirement profile for an SMSP as shown exemplarily
in Figure 2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200

R
eq

ui
re

d
C

ap
ac

ity

Time
Figure 2: Example Infeasibility Profile

Such a profile can be referred to as an infeasibility

profile in the context of disjunctive scheduling because
cumulated average capacity requirements greater than 1
indicate a conflict situation. The machine is potentially
required to process more than one operation at a time,
which is infeasible due to the capacity constraint.

We use the infeasibility profile of a subproblem in
order to determine two different bottleneck measures:
The earliest due date infeasibility and the weighted
average infeasibility per job.

4.3.1. Earliest due date infeasibility (INFEAS)
Given an infeasibility profile of an SMSP with respect
to earliest due dates, we determine the area of the
profile which exceeds the capacity limit. Let tv be the
(cumulated) capacity requirement at time t , which we
refer to as the infeasibility value at time t . Based on
this, we compute the earliest due date infeasibility
bottleneck measure as

max(1,0)t
t

infeas v= −∑

29

4.3.2. Weighted avg. infeasibility / job (WINFEAS)
In order to take job weights into consideration we
propose a further infeasibility related measure. For each
job k of the superior tardiness job shop and each
operation j we determine the time windows [,]k

j ije d
and compute an average infeasibility value for each of
these time windows:

() /() if is defined

0 otherwise

k
ij

j

d
k k

t ij j ijk
ij t e

v d e d
infeas =

⎧⎪⎪⎪ −⎪=⎨⎪⎪⎪⎪⎩

∑

We only keep the maximum value for each job k
and multiply it with the associated weight kw :

(,)
max ()

i

k k z
k iji j N

winfeas w infeas
∈

=

In order to amplify infeasibility values greater than
one we actually square them (2z =) before calculating
the maximum.

5. SUBPROBLEM SOLVING
It is in every way important how well the occurring
subproblems are solved: On the one hand, the solution
quality may steer the bottleneck selection process itself
as stated in Section 4.1. On the other hand, the resulting
sequence on a bottleneck machine gets inserted into the
overall partial solution and hence influences the whole
subsequent optimization process.

Apart from solution quality, the computation time
required for solving the SMSPs is an important factor in
the context of bottleneck scheduling, especially when
using machine backtracking and / or reoptimization.

Besides the beam search algorithm of Pinedo and
Singer (1999), we use different local search methods for
single machine optimization in our computational study.
We apply a simple best improvement local search
(BILS) procedure and a Tabu Search (TS) (Glover
1997) method. The approaches are conceptually similar
to those presented in (Braune 2006). However, small
modifications were necessary to respect the precedence
constraints and the objective function of

1 | , | (max)k
j k j j

k

r DPC w T∑

The local search methods rely on non-adjacent
pairwise interchanges (NAPI) of jobs and use a
modified ATC priority dispatch rule (Pinedo and Singer
1999) for generating the initial solution.

6. REOPTIMIZATION
Reoptimization may take place every time after a new
single machine sequence has been inserted into the
partial solution graph. According to the original idea
proposed by Adams, Balas and Zawack (1988), a
reoptimization cycle consists of the following steps:

1. Sort the set 0M of already sequenced
machines according to decreasing solution
quality

2. For each machine 0i M∈ do the following:
(a) Isolate the corresponding subproblem

from the graph by removing all directed
arcs between operations on machine i

(b) Optimize the single machine problem and
insert the resulting sequence into the graph

3. Unless the termination criterion is satisfied,
goto step 1. Otherwise stop.

The reoptimization procedure terminates after a fixed
number of reoptimization cycles or in case the most
recent cycle did not yield a further improvement in
overall solution quality. The latter principle is referred
to as full reoptimization in the following.

7. BACKTRACKING
Backtracking or selective enumeration (Adams, Balas
and Zawack 1988) can be used to examine various
different machine sequences for a given problem. Each
node in the search tree corresponds to a partial
permutation of already scheduled machines. Branching
is performed on the remaining unscheduled machines
which are ranked according to the used bottleneck
measure. The number of branches actually created at
each level is controlled by an “aperture” parameter β
(Pinedo and Singer 1999).

8. EXPERIMENTAL RESULTS
Our computational study is based on a set of 22
modified benchmark instances of size 10 x 10 taken
from the OR-Library (Beasley 1990): ABZ5, ABZ6,
LA16 – LA20, LA21 – LA24 (downsized by omitting
the last 5 jobs), MT10 and ORB1 – ORB10. Originally
intended for the makespan objective, these instances
have been adapted by Pinedo and Singer (1999) in order
to be able to use them for total weighted tardiness
experiments. In fact they added a weight jw and a due
date jd for each job. The due dates jd were generated
according to the following rule:

10

1
j j ij

i

d r f p
=

⎢ ⎥
⎢ ⎥= + ⋅⎢ ⎥⎣ ⎦
∑

where f denotes the tightness factor for due dates. We
used the benchmark set with 1.5f = .

Since subproblem solution methods are also
subject of our investigations, we first of all carried out a
performance comparison on the single machine problem
level. For this purpose, we sampled 30000 occurring
SMSPs during the application of the SBP to the
benchmark problem set. Optimal solutions are provided
by the beam search method using the maximum
aperture size. The solution quality obtained by the ATC
priority dispatch rule (cf. Section 5) with 2K = serves
as a baseline. The local search methods (BILS, TS)
have been parametrized according to Table 3.

The quality results are summarized in Table 1 in
terms of mean percentage deviations from the optimal
solution.

30

Table 1: Quality Deviations Obtained for Subproblems
 ATC BILS TS
Deviation 313,94 % 46,34 % 0,25%

Table 2: Computation Time for Subproblem Solution

 Beam Search BILS TS
Time (ms) 7953 250 239761

Table 3: Parametrization of LS Methods

 TS BILS
Neighborhood NAPI NAPI
Initial solution ATC ATC
Neighborhood size 20 max
Tabu tenure 2 -
Max non-improving
iterations

100 -

Furthermore, we compared the total running times

of the four methods over all 30000 problems (cf. Table
2). Our investigations reveal that Tabu Search yields
close to optimal solutions, but requires computation
times which are orders of magnitude higher than for the
(exact) Beam Search algorithm. Note that the running
times of the ATC rule are negligibly small.

As a next step we applied the Shifting Bottleneck
Procedure to the job shop benchmark set. We tested
different combinations of bottleneck selection rules,
subproblem solution methods and backtracking
schemes. The resulting total weighted tardiness values
are normalized using the weighted sum of job
processing times (Lin, Goodman and Punch 1997):

() /()j j j jw T w p∑ ∑

The results are aggregated for the problem set,
hence we report the sum of all individual TWT values.

For comparison purposes, Table 4 lists aggregated
results from priority dispatch rules, Pinedo and Singer’s
SBP (SB-PS), their priority threshold backtracking
heuristic (PTB) and their Branch and Bound algorithm
which is able to solve the instances to optimality. Note
that Singer and Pinedo imposed time limits for the
applications of the SBPs, therefore results are not fully
reproducible.

We run the SBP with and without backtracking
(single pass) and always using full reoptimization.
When backtracking is applied, we impose a limit on the
number of solved SMSPs for each single benchmark
instance. We believe that the computational effort can
be better measured that way than in terms of CPU time.
We compare the bottleneck selection criteria described
in Section 4 with simple workload (total processing
time) based and random prioritization. As for the
subproblem solution methods, we apply Beam Search,
BILS and Tabu Search when no backtracking is applied.
Since TS is very time consuming we did not use it in
the backtracking experiments.

The results obtained without backtracking, as
summarized in Table 5, are moderate, yet most of them
better than the PDR output. Quality and infeasibility

based bottleneck selection rules obviously outperform
the others, particularly the simple INFEAS rule
performs very well.

Table 4: Results from PDRs and from Literature

Table 5: Single Pass Computational Results

Table 6: Results Obtained with Backtracking (2β =)
and a Limit of 100000 Solved SMSPs

Table 7: Results Obtained with Backtracking (3β =)
and a Limit of 300000 Solved SMSPs

As for the slack based measures, WSLCK exceeds

SLCK which is possibly not meaningful enough to
distinguish sharply between the machines. It further
becomes clear that the choice of the subproblem
solution approach significantly affects solution quality.
While TS is only slightly worse than the Beam Search
algorithm, the performance of the simple local search
method considerably declines.

The incorporation of backtracking leads to a
tremendous improvement in solution quality (cf. Table
6 and Table 7). In this context, it is striking that quality
and WINFEAS perform almost equally well, with a
slight though not significant advantage over the other

Best
PDR

PTB SB-PS
(2β =)

SB-PS
(3β =)

Opt.

1,8189 1,3955 0,7426 0,6094 0,5733

Criterion Beam
Search

BILS TS

quality 1,3183 1,6544 1,6013
SLCK (Σ) 1,7899 2,4005 1,7403
WSLCK (Σ) 1,6306 2,0908 1,7357
INFEAS 1,1963 1,6574 1,2730
WINFEAS (Σ) 1,3809 1,6904 1,4212
workload 1,6483 2,1408 1,7628
random 2,2178 2,2060 2,0005

Criterion Beam Search BILS
quality 0,6801 0,7910
SLCK (Σ) 0,6879 0,7808
WSLCK (Σ) 0,6864 0,7849
INFEAS 0,7284 0,8383
WINFEAS (Σ) 0,6973 0,7808
workload 0,7284 0,8839
random 0,7222 0,8392

Criterion Beam Search BILS
quality 0,6237 0,7059
SLCK (Σ) 0,6526 0,7429
WSLCK (Σ) 0,6578 0,7392
INFEAS 0,6519 0,7150
WINFEAS (Σ) 0,6263 0,7079
workload 0,6783 0,7741
random 0,6663 0,7801

31

rules. Hence we conjecture that WINFEAS is a good
indicator for the expected solution quality. In general, it
can be observed that the differences between the
bottleneck selection rules are quite small. Even the
random rule is not clearly inferior. We presume that the
probability of generating good solutions increases with
the number of examined machine sequences. To verify
this conjecture, we enumerated all possible machine
sequences for selected problem instances and
discovered that the number of machine sequences
yielding near-optimal solutions was very large. This
observation coincides with the findings of Aytug,
Kempf and Uzsoy (2002) for the makespan objective.

Again, the BILS subproblem solution method
performs definitely worse compared to the exact Beam
Search algorithm. It seems that the exact solution of the
occurring subproblems is an essential factor in TWT
oriented shifting bottleneck scheduling.

9. CONCLUSION AND OUTLOOK
We have presented a computational study of the
Shifting Bottleneck Procedure for weighted tardiness
job shop scheduling. On the one hand, we have
developed dedicated bottleneck selection criteria and
compared them to conventional ones. Empirical results
show that the dedicated criteria yield consistently good
and partly equivalent performance compared to the
conventional quality based prioritization. The advantage
of the proposed rules is mainly the fact that the
subproblems need not be solved in advance in order to
rank them. This may not be critical for small problems,
but possibly a key factor for medium size or even large-
scale instances.

On the other hand, we have analyzed the effect of
applying alternative subproblem solution methods. Our
computational results clearly indicate that solving the
subproblems to optimality or at least close to optimality
is vital in the TWT context. However, preliminary tests
revealed that the running time of Pinedo and Singer’s
Beam Search algorithm increases dramatically with the
problem size. As a consequence, trying to find optimal
solutions this way can be considered infeasible for
subproblem instances with more than 15 jobs. For this
reason, we are convinced that efficient heuristic
subproblem solving will play a central role when
encountering larger instances.

Our future research will be directed towards an
effective application of the SBP to medium-size and
large-scale TWT job shops. According to preliminary
experiments (Braune, Wagner and Affenzeller 2007),
we assume that the required computation time renders
backtracking impractical for large instances, even when
using heuristic SMSP solvers. Therefore we intend to
gain deeper insight into subproblem interaction in order
to make the single pass procedure more competitive.

REFERENCES
Adams, J., Balas, E., Zawack, D., 1988. The shifting

bottleneck procedure for job shop scheduling.
Management Science, 34 (3), 391-401.

Anderson, E.J., Nyirenda, J.C., 1990. Two new rules to
minimize tardiness in a job shop. International
Journal of Prod. Research, 28 (12), 2277-2292.

Aytug, H., Kempf, K., Uzsoy, R., 2002. Measures of
subproblem criticality in decomposition
algorithms for shop scheduling. International
Journal of Production Research, 41 (5), 865-882.

Beasley, J.E., 1990. OR-Library. Available from:
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
[Accessed 17th July 2008].

De Bontridder, K.M.J., 2005. Minimizing total
weighted tardiness in a generalized job shop.
Journal of Scheduling, 8, 479-496.

Braune, R., Affenzeller, M., Wagner, S., 2006. Efficient
heuristic optimization in single machine
scheduling. Proceedings of the International
Mediterranean Modelling Multiconference I3M
2006, 499-504. Barcelona.

Braune, R., Wagner, S., Affenzeller, M., 2007.
Optimization methods for large-scale production
scheduling problems. In: R. Moreno-Diaz et al.,
eds. EUROCAST 2007, LNCS 4739. Springer
Verlag Heidelberg, 812-819.

Demirkol, E., Mehta, S., Uzsoy, R., 1997. A
computational study of shifting bottleneck
procedures for shop scheduling problems. Journal
of Heuristics, 3, 111-137.

French, S., 1982. Sequencing and Scheduling: An
Introduction to the Mathematics of the Job Shop.
New York: Wiley.

Glover, F., 1997. Tabu Search. Kluwer Academic
Publishers.

Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy
Kan, A.H.G., 1979. Optimization and
approximation in deterministic sequencing and
scheduling: a survey. Annals of Operations
Research, 5, 187-326.

Holtsclaw, H.H., Uzsoy, R., 1996. Machine criticality
measures and subproblem solution procedures in
shifting bottleneck methods. Journal of the
Operational Research Society, 47, 666-677.

Kreipl, S., 2000. A large step random walk for
minimizing total weighted tardiness in a job shop.
Journal of Scheduling, 3, 125-138.

Lin, S.-C., Goodman, E.D., Punch, W.F., 1997. A
genetic algorithm approach to dynamic job shop
scheduling problem. Proceedings of the 7th
International Conference on Genetic Algorithms
1997, 481-488, East Lansing, USA.

Mattfeld, D.C., Bierwirth, C., 2004. An efficient genetic
algorithm for job shop scheduling with tardiness
objectives. European Journal of Operational
Research, 155 (3), 616-630.

Pinedo, M., Singer, M., 1999. A shifting bottleneck
heuristic for minimizing the total weighted
tardiness in a job shop. Naval Research Logistics,
46 (1), 1-17.

Vepsalainen, P.J., Morton, T.E., 1987. Priority rules for
job shops with weighted tardiness costs.
Management Science, 33 (8), 1035-1047.

32

