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ABSTRACT 
In this paper we perform investigations on the Shifting 
Bottleneck Procedure for weighted tardiness job shop 
scheduling problems. We propose machine 
prioritization rules which explicitly consider the specific 
structure of the occurring subproblems and compare 
them with conventional criteria. We study their effects 
in combination with alternative subproblem solution 
methods. Furthermore, we analyze the role of machine 
backtracking as an advanced control structure. 
Computational results are presented based on a set of 
adapted benchmark problems. 

 
Keywords: job shop scheduling, total weighted 
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1. INTRODUCTION 
Job Shop Scheduling (French 1982) involves 
sequencing a set of jobs on multiple machines. In the 
simplest case, each job is processed on each machine 
exactly once, whereby the processing orders (routings) 
are predetermined (precedence constraints) and can be 
different for each job. A job hence consists of several 
operations having fixed processing times assigned to 
them. A machine can only process one operation at a 
time (capacity / disjunctive constraint) and no 
preemption is allowed, i.e. once started, the processing 
of an operation cannot be interrupted until it has 
finished. 

The most common optimization objective in job 
shop scheduling is certainly the minimization of the 
makespan, i.e. the maximum completion time maxC  of 
all jobs.  

However, other measures are at least that important 
and closer to the real world. Those include the number 
of tardy jobs, total completion or flow time  and total 
weighted tardiness (TWT) j jw T∑  which is subject of 
investigation in our contribution.  

The tardiness jT  of a job j  with respect to its due 
date jd  is computed as max(0, )j j jT C d= − , where 

jC  denotes the completion time of job j .  

The associated problem may also include release 
times jr  for jobs and is denoted as 

| |j j jJm r w T∑  

in the three-field notation of Graham, Lawler, Lenstra 
and Rinnooy Kan (1979). 

Contrary to the makespan objective, weighted 
tardiness job shops have not attracted much attention in 
scheduling research, only a few contributions are 
available in this area.  Among them are dedicated 
priority dispatch rules (Vepsalainen and Morton 1987; 
Anderson and Nyirenda 1990), local search based 
approaches (Kreipl 2000; de Bontridder 2005) and 
genetic algorithms (Mattfeld and Bierwirth 2004). This 
paper deals with an additional approach, the so called 
Shifting Bottleneck Procedure (SBP), initially proposed 
for the minimum makespan problem (Adams, Balas and 
Zawack 1988) and later adapted to | |j j jJm r w T∑ by 
Pinedo and Singer (1999). We perform a computational 
study concerning the application of different 
subproblem solution procedures and machine 
prioritization rules within the shifting bottleneck 
procedure. Comparable studies have been published for 

maxC  and maxL  (maximum lateness) problems 
(Holtsclaw and Uzsoy 1996; Demirkol, Mehta and 
Uzsoy 1997; Aytug, Kempf and Uzsoy 2002). We 
extend these investigations to weighted tardiness job 
shops by considering the special characteristics of this 
kind of problem. Our paper is organized as follows:  

In Section 2 we introduce the Shifting Bottleneck 
Procedure for job shop scheduling in general. Sections 
3-6 describe its main tasks in the TWT context, with a 
special focus on machine prioritization  and subproblem 
solution. Section 7 gives a brief overview on the 
concept of machine backtracking. In Section 8 we 
present our experimental results. A  conclusion and an 
outlook on future research are given in Section 9. 

 
2. SHIFTING BOTTLENECK PROCEDURES 

FOR JOB SHOP SCHEDULING 
Shifting Bottleneck Procedures belong to the most 
popular optimization methods in the area of job shop 
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scheduling. Established in the late 1980s by Adams, 
Balas and Zawack (1988), they have been successfully 
applied to a wide range of different problem setups both 
in theory and practice.  

The main idea behind bottleneck scheduling is a 
decomposition of a job shop problem into several single 
machine problems. The single machine problems are 
solved separately, one after the other, always 
prioritizing the most critical machine with respect to a 
given bottleneck measure. Each single machine solution 
is inserted into a partial schedule for the enclosing job 
shop problem until all machines have been scheduled.  

The procedure is based on the disjunctive graph 
representation of the underlying problem. During the 
progress of the SBP, the graph represents a partial 
solution to the job shop problem. Each time a 
subproblem is solved, the resulting sequence on the 
associated machine is inserted into the graph by 
orienting the (undirected) arcs between the operations 
on this machine. Let M  be the set of all machines and 

0M  the set of already scheduled machines. Then we can 
describe the flow of the shifting bottleneck procedure 
according to Figure 1. 
 

Initialize disjunctive graph G
(all arcs are undirected)

Set M0 = {}

Select bottleneck machine m  M \ M0

Solve single machine problem on 
machine m and set M0 = M0  {m}

Insert sequence of operations on m into 
graph G by orienting arcs

(Optional)
Reoptimize each machine k M0

M0 = M?
no

Stop
yes

Identify subproblems associated with 
each machine  k  M \ M0

 
Figure 1: Outline of the Shifting Bottleneck Procedure 

 
Given this outline, the following four main tasks 

can be identified: 

1. Subproblem identification 
2. Bottleneck selection (machine prioritization) 
3. Subproblem solution 
4. Reoptimization 

Furthermore, the SBP can be embedded into an 
enumeration framework in order to examine different 
machine orders and determine the best one (Adams, 
Balas and Zawack 1988).  

Due to the fact that the graph structure of tardiness 
job shops differs considerably from those of makespan 
or maximum lateness problems, the tasks subproblem 
identification, bottleneck solution and subproblem 
solution require a dedicated approach as described by 
Pinedo and Singer (1999). In the following sections we 
give an overview on the tasks enumerated above in the 
context of tardiness job shop scheduling. Particularly 
the bottleneck selection and subproblem solution 
processes receive specific attention, as they represent 
the basis of our investigations. 

 
3. SUBPROBLEM IDENTIFICATION 
Consider a tardiness job shop with m  machines and n  
jobs. In the graph representation of this job shop, there 
are n  sink nodes, one for each job. When isolating a 
single machine scheduling problem (SMSP) from the 
graph, each operation in the SMSP has exactly n  
different due dates resulting from the longest paths 
between the respective operation and the sink nodes.  

According to Pinedo and Singer (1999), the single 
machine problems can be described as follows: Let 
( , )i j  be an operation to be scheduled on machine i , 
then k

ijd  denotes the (local) due date of operation ( , )i j  
with respect to job k . Given the completion time ijC  of 
operation ( , )i j ,  the tardiness of the operation 
concerning job k  can be computed as 

max( ,0)k k
ij ij ijT C d= − . Since all jobs on machine i  

have to be scheduled, the actual tardiness of job k  is 
determined as 

( , )
max

i

k
iji j N

T
∈

, where iN  denotes the set of all 

operations on machine i . The total increase in the 
objective function given a schedule on machine i  is 

( , )1

( max )
i

n
k

k iji j Nk

w T
∈

=
∑  

Considering delayed precedence constraints 
(DPCs) due to potential paths in the graph between 
operations on a machine, the single machine 
subproblems to be solved can be described as  

1 | , | (max )k
j k j j

k

r DPC w T∑  

 
4. BOTTLENECK SELECTION 
The selection of a bottleneck machine is an intrinsic 
step in the SBP. The definition of a bottleneck is not 
unambiguous however. As for the makespan case, there 
are many different ways of determining whether a 
machine should be prioritized over others (Holtsclaw 
and Uzsoy 1996; Aytug, Kempf and Uzsoy 2002). After 
a short introduction on the conventional quality based 
prioritization, we propose bottleneck selection criteria 
which are dedicated to the subproblem structure arising 
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from tardiness job shops. The criteria are based on slack 
and problem infeasibility and need to be computed 
dynamically in each iteration of the SBP by analyzing 
the subproblems of all unscheduled machines.  

4.1. Quality 
The most common bottleneck selection criterion is 
oriented on the solution quality of the subproblems. In 
order to determine this measure, subproblems of all 
unscheduled machines have to be solved in advance and 
their resulting solution quality values are then ranked in 
descending order. The machine whose subproblem 
yields the highest TWT value is regarded as the 
bottleneck and its sequence gets inserted into the graph 
(Pinedo and Singer 1999). 

4.2. Slack  
The main idea behind this criterion is that the 
subproblem with the least slack with respect to its due 
dates may be regarded as the bottleneck. Due to the 
tighter due dates, it is more likely that the problem in 
question will increase the overall TWT. We distinguish 
two different types of slack: The slack of each operation 
with respect to its earliest local due date and the 
weighted minimum slack per job. 

4.2.1. Earliest Due Date Slack ( SLCK ) 
Consider an SMSP on machine i  and let je  be the 
earliest possible starting time of an operation j . Note 
that je  is the maximum of the release time jr  and the 
earliest starting time of the operation due to potential 
delayed precedence constraints. Then for each operation 
j  with processing time jp  a slack value can be 

computed as  
min( ) ( )k

ij ij j jk
slck d e p= − +  

4.2.2. Weighted Minimum slack per job (WSLCK ) 
Contrary to SLCK , we compute the slack values not 
for each operation but for each job k  of the superior 
TWT job shop problem. By this, we can include the job 
weights kw  into the calculation and therefore provide a 
more detailed estimate of the machine’s criticality. The 
slack of an operation j  regarding due date k

ijd  is 
defined as  

( ) if is defined

otherwise

k k
ij j j ijk

ij

d e p d
slck

⎧⎪ − +⎪=⎨⎪∞⎪⎩
 

Since multiple operations may have a (local) due 
date regarding a job k , we are interested in the 
minimum slack value with respect to k . Additionally 
we want to consider job weights, hence we compute 

( , )
1/ min ( )

i

k k
k iji j N

wslck w slck
∈

=  

4.3. Infeasibility  
The capacity (disjunctive) constraint stated in Section 1 
enforces that no more than one operation at a time is 
processed on a machine. However, given time windows 
for operations defined by the release time jr  and a due 

date k
ijd , it may occur that multiple operations require to 

be processed on a machine at the same time in order not 
to violate the due date(s). Such a situation can be 
detected by determining an infeasibility profile for the 
respective single machine problem (Aytug, Kempf and 
Uzsoy 2002).  

We determine an infeasibility profile for the 
specific SMSPs described in Section 3 in the following 
way: For each operation j  we define a time window 
ranging from the earliest starting time je  to the earliest 

due date min( )k
ijk

d . The processing time jp  is 

distributed equally across the length of the time 
window, hence we obtain an average required capacity 
for any point within the time window.  

By cumulating the time windows of all operations 
with their required capacities, we can create a capacity 
requirement profile for an SMSP as shown exemplarily 
in Figure 2.  
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Figure 2: Example Infeasibility Profile 

 
Such a profile can be referred to as an infeasibility 

profile in the context of disjunctive scheduling because 
cumulated average capacity requirements greater than 1 
indicate a conflict situation. The machine is potentially 
required to process more than one operation at a time, 
which is infeasible due to the capacity constraint. 

We use the  infeasibility profile of a subproblem in 
order to determine two different bottleneck measures: 
The earliest due date infeasibility and the weighted 
average infeasibility per job.  

4.3.1. Earliest due date infeasibility ( INFEAS ) 
Given an infeasibility profile of an SMSP with respect 
to earliest due dates, we determine the area of the 
profile which exceeds the capacity limit.  Let tv  be the 
(cumulated) capacity requirement at time t ,  which we 
refer to as the infeasibility value at time t . Based on 
this, we compute the  earliest due date infeasibility 
bottleneck measure as 

max( 1,0)t
t

infeas v= −∑  
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4.3.2. Weighted avg. infeasibility / job (WINFEAS ) 
In order to take job weights into consideration we 
propose a further infeasibility related measure. For each 
job k  of the superior tardiness job shop and each 
operation j  we determine the time windows [ , ]k

j ije d  
and compute an average infeasibility value for each of 
these time windows: 

( ) /( ) if is defined

0 otherwise

k
ij

j

d
k k

t ij j ijk
ij t e

v d e d
infeas =

⎧⎪⎪⎪ −⎪=⎨⎪⎪⎪⎪⎩

∑  

We only keep the maximum value for each job k  
and multiply it with the associated weight kw : 

( , )
max ( )

i

k k z
k iji j N

winfeas w infeas
∈

=
 

In order to amplify infeasibility values greater than 
one we actually square them ( 2z = ) before calculating 
the maximum. 
 
5. SUBPROBLEM SOLVING 
It is in every way important how well the occurring 
subproblems are solved: On the one hand, the solution 
quality may steer the bottleneck selection process itself 
as stated in Section 4.1. On the other hand, the resulting 
sequence on a bottleneck machine gets inserted into the 
overall partial solution and hence influences the whole 
subsequent optimization process.  

Apart from solution quality, the computation time 
required for solving the SMSPs is an important factor in 
the context of bottleneck scheduling, especially when 
using machine backtracking and / or reoptimization. 

Besides the beam search algorithm of Pinedo and 
Singer (1999), we use different local search methods for 
single machine optimization in our computational study. 
We apply a simple best improvement local search 
(BILS) procedure and a Tabu Search (TS) (Glover 
1997) method. The approaches are conceptually similar 
to those presented in (Braune 2006). However, small 
modifications were necessary to respect the precedence 
constraints and the objective function of  

1 | , | (max )k
j k j j

k

r DPC w T∑  

The local search methods rely on non-adjacent 
pairwise interchanges (NAPI) of jobs and use a 
modified ATC priority dispatch rule (Pinedo and Singer 
1999) for generating the initial solution.  

 
6. REOPTIMIZATION 
Reoptimization may take place every time after a new 
single machine sequence has been inserted into the 
partial solution graph. According to the original idea 
proposed by Adams, Balas and Zawack (1988), a 
reoptimization cycle consists of the following steps: 
 

1. Sort the set 0M  of already sequenced 
machines according to decreasing solution 
quality 

2. For each machine 0i M∈  do the following: 
(a) Isolate the corresponding subproblem 

from the graph by removing all directed 
arcs between operations on machine i  

(b) Optimize the single machine problem and 
insert the resulting sequence into the graph 

3. Unless the termination criterion is satisfied, 
goto step 1. Otherwise stop. 

 
The reoptimization procedure terminates after a fixed 
number of reoptimization cycles or in case the most 
recent cycle did not yield a further improvement in 
overall solution quality. The latter principle is referred 
to as full reoptimization in the following. 
 
7. BACKTRACKING 
Backtracking or selective enumeration (Adams, Balas 
and Zawack 1988) can be used to examine various 
different machine sequences for a given problem. Each 
node in the search tree corresponds to a partial 
permutation of already scheduled machines. Branching 
is performed on the remaining unscheduled machines 
which are ranked according to the used bottleneck 
measure. The number of branches actually created at 
each level is controlled by an “aperture” parameter β  
(Pinedo and Singer 1999).  

 
8. EXPERIMENTAL RESULTS 
Our computational study is based on a set of 22 
modified benchmark instances of size 10 x 10 taken 
from the OR-Library (Beasley 1990): ABZ5, ABZ6, 
LA16 – LA20, LA21 – LA24 (downsized by omitting 
the last 5 jobs), MT10 and ORB1 – ORB10. Originally 
intended for the makespan objective, these instances 
have been adapted by Pinedo and Singer (1999) in order 
to be able to use them for total weighted tardiness 
experiments. In fact they added a weight jw  and a due 
date jd  for each job. The due dates jd  were generated  
according to the following rule: 

10

1
j j ij

i

d r f p
=

⎢ ⎥
⎢ ⎥= + ⋅⎢ ⎥⎣ ⎦
∑

 
where f  denotes the tightness factor for due dates. We 
used the benchmark set with 1.5f = . 

Since subproblem solution methods are also 
subject of our investigations, we first of all carried out a 
performance comparison on the single machine problem 
level. For this purpose, we sampled 30000 occurring 
SMSPs during the application of the SBP to the 
benchmark problem set. Optimal solutions are provided 
by the beam search method using the maximum 
aperture size. The solution quality obtained by the ATC 
priority dispatch rule (cf. Section 5) with 2K =  serves 
as a baseline. The local search methods (BILS, TS) 
have been parametrized according to Table 3. 

The quality results are summarized in Table 1 in 
terms of mean percentage deviations from the optimal 
solution. 
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Table 1: Quality Deviations Obtained for Subproblems 
 ATC BILS TS 
Deviation  313,94 % 46,34 % 0,25% 

  
Table 2: Computation Time for Subproblem Solution 

 Beam Search BILS TS 
Time (ms) 7953 250 239761 

 
Table 3: Parametrization of LS Methods 

 TS BILS 
Neighborhood NAPI NAPI 
Initial solution ATC ATC 
Neighborhood size 20 max 
Tabu tenure 2 - 
Max non-improving 
iterations 

100 - 

 
Furthermore, we compared the total running times 

of the four methods over all 30000 problems (cf. Table 
2). Our investigations reveal that Tabu Search yields 
close to optimal solutions, but requires computation 
times which are orders of magnitude higher than for the 
(exact) Beam Search algorithm. Note that the running 
times of the ATC rule are negligibly small. 

As a next step we applied the Shifting Bottleneck 
Procedure to the job shop benchmark set. We tested 
different combinations of bottleneck selection rules, 
subproblem solution methods and backtracking 
schemes. The resulting total weighted tardiness values 
are normalized using the weighted sum of job 
processing times (Lin, Goodman and Punch 1997): 

( ) /( )j j j jw T w p∑ ∑  

The results are aggregated for the problem set, 
hence we report the sum of all individual TWT values.  

For comparison purposes, Table 4 lists aggregated 
results from priority dispatch rules, Pinedo and Singer’s 
SBP (SB-PS), their priority threshold backtracking 
heuristic (PTB) and their Branch and Bound algorithm 
which is able to solve the instances to optimality. Note 
that Singer and Pinedo imposed time limits for the 
applications of the SBPs, therefore results are not fully 
reproducible. 

We run the SBP with and without backtracking 
(single pass) and always using full reoptimization. 
When backtracking is applied, we impose a limit on the 
number of solved SMSPs for each single benchmark 
instance. We believe that the computational effort can 
be better measured that way than in terms of CPU time. 
We compare the bottleneck selection criteria described 
in Section 4 with simple workload (total processing 
time) based and random prioritization. As for the 
subproblem solution methods, we apply Beam Search, 
BILS and Tabu Search when no backtracking is applied. 
Since TS is very time consuming we did not use it in 
the backtracking experiments. 

The results obtained without backtracking, as 
summarized in Table 5, are moderate, yet most of them 
better than the PDR output. Quality and infeasibility 

based bottleneck selection rules obviously outperform 
the others, particularly the simple INFEAS  rule 
performs very well. 
 

Table 4: Results from PDRs and from Literature 

 
Table 5: Single Pass Computational Results 

 
Table 6: Results Obtained with Backtracking ( 2β = ) 
and a Limit of 100000 Solved SMSPs 

 
Table 7: Results Obtained with Backtracking ( 3β = ) 
and a Limit of 300000 Solved SMSPs 

 
As for the slack based measures, WSLCK  exceeds 

SLCK  which is possibly not meaningful enough to 
distinguish sharply between the machines. It further 
becomes clear that the choice of the subproblem 
solution approach significantly affects solution quality. 
While TS is only slightly worse than the Beam Search 
algorithm, the performance of the simple local search 
method considerably declines. 

The incorporation of backtracking leads to a 
tremendous improvement in solution quality (cf. Table 
6 and Table 7). In this context, it is striking that quality 
and WINFEAS  perform almost equally well, with a 
slight though not significant advantage over the other 

Best 
PDR 

PTB SB-PS 
( 2β = ) 

SB-PS 
( 3β = ) 

Opt. 

1,8189 1,3955 0,7426 0,6094 0,5733 

Criterion Beam 
Search 

BILS TS 

quality 1,3183 1,6544 1,6013
SLCK  (Σ) 1,7899 2,4005 1,7403
WSLCK  (Σ) 1,6306 2,0908 1,7357
INFEAS   1,1963 1,6574 1,2730
WINFEAS  (Σ) 1,3809 1,6904 1,4212
workload 1,6483 2,1408 1,7628
random 2,2178 2,2060 2,0005

Criterion Beam Search BILS 
quality 0,6801 0,7910
SLCK  (Σ) 0,6879 0,7808
WSLCK  (Σ) 0,6864 0,7849
INFEAS  0,7284 0,8383
WINFEAS  (Σ) 0,6973 0,7808
workload 0,7284 0,8839
random 0,7222 0,8392

Criterion Beam Search BILS 
quality 0,6237 0,7059
SLCK  (Σ) 0,6526 0,7429
WSLCK  (Σ) 0,6578 0,7392
INFEAS  0,6519 0,7150
WINFEAS  (Σ) 0,6263 0,7079
workload 0,6783 0,7741
random 0,6663 0,7801
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rules. Hence we conjecture that WINFEAS  is a good 
indicator for the expected solution quality. In general, it 
can be observed that the differences between the 
bottleneck selection rules are quite small. Even the 
random rule is not clearly inferior. We presume that the 
probability of generating good solutions increases with 
the number of examined machine sequences. To verify 
this conjecture, we enumerated all possible machine 
sequences for selected problem instances and 
discovered that the number of machine sequences 
yielding near-optimal solutions was very large. This 
observation coincides with the findings of Aytug, 
Kempf and Uzsoy (2002) for the makespan objective. 

Again, the BILS subproblem solution method 
performs definitely worse compared to the exact Beam 
Search algorithm. It seems that the exact solution of the 
occurring subproblems is an essential factor in TWT 
oriented shifting bottleneck scheduling.  
 
9. CONCLUSION AND OUTLOOK 
We have presented a computational study of the 
Shifting Bottleneck Procedure for weighted tardiness 
job shop scheduling. On the one hand, we have 
developed dedicated bottleneck selection criteria and 
compared them to conventional ones. Empirical results 
show that the dedicated criteria yield  consistently good 
and partly equivalent performance compared to the 
conventional quality based prioritization. The advantage 
of the proposed rules is mainly the fact that the 
subproblems need not be solved in advance in order to 
rank them. This may not be critical for small problems, 
but possibly a key factor for medium size or even large-
scale instances. 

On the other hand, we have analyzed the effect of 
applying alternative subproblem solution methods. Our 
computational results clearly indicate that solving the 
subproblems to optimality or at least close to optimality 
is vital in the TWT context. However, preliminary tests 
revealed that the running time of Pinedo and Singer’s 
Beam Search algorithm increases dramatically with the 
problem size. As a consequence, trying to find optimal 
solutions this way can be considered infeasible for 
subproblem instances with more than 15 jobs.  For this 
reason, we are convinced that efficient heuristic 
subproblem solving will play a central role when 
encountering larger instances. 

Our future research will be directed towards an 
effective application of the SBP to medium-size and 
large-scale TWT job shops. According to preliminary 
experiments (Braune, Wagner and Affenzeller 2007), 
we assume that the required computation time renders 
backtracking impractical for large instances, even when 
using heuristic SMSP solvers. Therefore we intend to 
gain deeper insight into subproblem interaction in order 
to make the single pass procedure more competitive. 
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