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ABSTRACT 
In this paper we propose a method for conducting 
infrastructure effects-based modeling in uncertain 
environments.  Critical infrastructure is composed of 
intertwining physical and social networks. Events in 
one network often cascade to other networks creating a 
domino effect.  This cascading effect is not always well 
understood due to uncertainties in the multiple levels of 
effect.  To account for these uncertainties, we present a 
method using fuzzy finite state machines (FFSM). 
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1. INTRODUCTION AND MOTIVATION 
Critical infrastructure in the United States is defined as  
“systems and assets, whether physical or virtual, so vital 
to the United States that the incapacity or destruction of 
such systems and assets would have a debilitating 
impact on security, national economic security, national 
public health or safety, or any combination of those 
matters. “ (U.S. Congress 2001)   The categorization of 
such infrastructures varies slightly between countries, 
but is consistent in principle.  The U.S. Government 
breaks the infrastructure into thirteen individual sectors: 

 
• Agriculture; 
• Food; 
• Water; 
• Public Health; 
• Emergency Services; 
• Government; 
• Defense Industrial Base; 
• Information and Telecommunications; 
• Energy; 
• Transportation; 
• Banking and Finance; 
• Chemical Industry; and 
• Postal and Shipping. (Clinton 1996) 

 
Sectors in turn contain individual infrastructures such as 
highways, rail systems, electric power generation and 
distribution, etc.  Some of these systems are managed 
by government agencies, but the majority resides with 
industry.  These infrastructures are characterized by a 

complexity of intertwined relationships that exist due to 
such factors as growing technological connectivity and 
economic requirements for distributed operations.  
 While this interconnectivity has increased 
information exchanged and improved efficiency of 
operations, it has also resulted in a potential chain of 
effect such that when a system is acted upon by an 
external force, it causes a domino effect or rippling of 
reaction not only within its own sector, but across 
multiple dimensions of infrastructure.  

Effects Analysis, also referred to as effects-based 
and interdependency analysis, centers on gaining 
understanding on the resulting chain of effect that 
results when a system is perturbed by an event. While 
system dynamics may be well modeled and understood 
along individual infrastructures, such as in an electric 
power grid model or a water distribution model, how 
multiple infrastructures interact and affect each other, 
especially in light of upset conditions challenge current 
day understanding.  Primary effects of an event are most 
often immediately observable and understandable; the 
subsequent chains of events that occur are less 
understood.  The lack of appreciation for these second 
order, third order, n-order effects pose a serious 
problem for decision makers and responders in the 
event of global, national, and local event response. 

A common method of representation for the 
systems of study in Effects Analysis is to use a directed 
graph or digraph and observe impact propagation.  The 
system is decomposed into a set of key assets, and 
interdependent relationships, which in turn are modeled 
in a directed graph G(N,E) where N, the set of nodes, 
represents key assets, and E, the set of edges, represents 
the relationship between nodes.  The system itself may 
represent functionally, physically, or behaviorally 
related group of regularly interacting or interdependent 
elements; that group of elements forming a unified 
whole.   
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Figure 1: Chain of effects from phenomena to emergent 
impact 

 
1.1. Uncertainty 
To better understand these issues and representation, let 
nIa and nIb ∈  N be interconnected system nodes from 
infrastructure I, and the supplier of some resource or 
influence. Further let  nKa ∈  N be a system node from 
infrastructure K and the consumer of that resource with 
edge e(Ib,Ka), ∈  E representing the resource flow 
between the two nodes. Interest therefore arises when a 
phenomena or event disrupts infrastructure I, causing a 
cascading effect into infrastructure K as illustrated in 
Figure 1. 

 Such analysis, however, is complicated by 
uncertainty. This is truly a system of systems model and 
may incorporate various sub-models to represent the 
nature of the phenomena, the impact that the 
phenomena has on an infrastructure system, the 
infrastructure system model itself, and finally an 
interdependency model that captures the relationship 
between different infrastructures.  

At each of these system layers or models, 
uncertainty can exist. Further, this uncertainty may be 
very difficult to identify and thus quantify.  As an 
example consider the attempt to model the impact of 
hurricane wind damage on housing structures and 
predict the subsequent impact on not only the individual 
structures, but on electrical power, and on population 
mobility trends during and immediately after the impact 
event.  

Wind damage models may be employed to 
estimate the potential damage to physical structures.  
This information can be represented in the form of a 
damage matrix, Table 1, or a damage curve, Figure 3. 
This damage matrix developed by Filliben et. Alt. (2002  
) list the probability of damage to a residential structure 
broken down by loss or roof and by total 

 
Table 1. Damage Matrix for Residential Housing 

v 
mph 

 90 100 110 120 130 140 

R P(R/v) 0.03 0.2 0.5 0.8 1.0 1.0 
C P(C/v) 0 0 0.02 0.05 0.2 1.0 

 
Several issues arise from using this information in 

an infrastructure effects model. 
 
1. Damage predictions are usually based on 

models utilizing either generic specifications 
or on the actual infrastructure in a specific 
area.  In the first case, damage predictions on 
basic structural requirements do not account 
for the specifics of geographical areas.  
Conversely, in the second case, modeling for 
specific geographical areas, does not 
necessarily capture features outside of that 
area. 

2. While absolutes can be modeled with high 
confidence, intermediates states are more 
difficult to ascertain. 

 
Additionally, the primary effect may not be the 

main issue of concern, but a subsequent emergent 
behavior might be the focus of analysis.   Consider the 
case of wind damage in a residential community.  A 
driving concern to emergency coordinators and 
responders, may not be the damage itself, but the 
mobility patterns of the residents and the effect that 
changes in infrastructure plays, i.e. when do residents 
vacate and return?  In this case, wind damage may be 
only one consideration to residential mobility.  Other 
factors may include electric power, proximity to the 
event, availability of transport, etc…  

As such, one can see that effects analysis modeling 
is wrought with multiple levels of uncertainty.  The goal 
of effects analyses should not be the determination of a 
precise outcome, but it should be to identify a set of 
possible outcomes to a given event or series of events.  
It is with this consideration that we introduce fuzzy set 
theory and fuzzy simulation as a means to model sets of 
possible emergent effects.  

 
2. FUZZY SIMULATION 

 
2.1. Uncertainty in Simulation Models 
Computer simulation is the attempt to gain 
understanding of real work phenomena that are too 
complex for strictly analytical evaluation.  A computer 
simulation uses a mathematical model to represent the 
object system, initial conditions (i.e. an initial data sets 
and assumptions on system state) are established, and 
one or more iterations of the simulation are run to gain 
understanding on system performance.  

While the use of computer simulation continues to 
grow, it is important to understand the issues and 
limitations associated with its use. Specifically, some 
potential disadvantages include:  

 
• A stochastic simulation only produces an 

estimate of a systems true characteristics based 
on a set of initial inputs (Law and Kelton 
1982) 
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• It is possible to place too much confidence in 
the result of a simulation’s outcome. If either 
the underlying model or the data is incorrect, 
then the results of the simulation will reflect a 
level of uncertainty. (Law and Kelton 1982) 

• The demand for numerical precision and 
measurability may lead to over simplification 
and approximation also introducing uncertainty 
(Anglani 1998) 

 
Aló et alt (2002) further emphasizes the above 

points in stating that in modeling decision making under 
uncertainty, it is often the case that the decision maker 
does not know or have full understanding of the true 
“state of the world” surrounding his/her decisions.  
Further, this lack of knowledge may also include the 
lack of probabilistic data associated with the potential 
states of the world.  These limitations, however, do not 
diminish the value that computer simulation adds in 
system understanding.  The key then is to both 
comprehend and mitigate these potential drawbacks. 
This paper focuses on a method to capture the multiple 
levels of uncertainties associated with infrastructure 
effects modeling. 

Current simulation techniques to mitigate 
uncertainty in modeling and simulation results include 
the use of confidence bounds on simulation results.  
Multiple methods can be employed to establish and 
minimize these uncertainty bounds including 
conducting large numbers of stochastic simulation runs, 
analyzing input data precision, and incorporating model 
uncertainty into the final output.  The method that we 
propose for infrastructure effects modeling is the use of 
fuzzy set theory not only to capture uncertainty, but to 
preserve the nature of the uncertainty throughout the 
simulation process.   

 
2.2. Fuzzy Simulation Integration 
The integration of fuzzy set theory into simulation has 
been proposed and demonstrated in earnest since the 
mid-1990’s.  Anglani et alt (1998) used fuzzy sets by to 
model the uncertainty of the time interval between 
events in a discrete simulation.  He states that the 
integration of fuzzy sets into simulations allows the 
formulation and solution of problems whose complexity 
or simply the lack of state knowledge inhibits the use of 
traditional mathematical models in solution 
development.    

Sevastjanov and Rog (2003) likewise used fuzzy 
sets to model the interval between events over the more 
traditional approach of a probabilistic distribution of 
times for events in a logistics simulation. Hullermeier 
(1996) citing that the knowledge of dynamical systems 
is often vague or ill defined, applied fuzzy set principles 
in developing a differential equation model for the 
prediction of object trajectory in spatiotemporal 
reasoning. Still, however, the application of fuzzy 
principles has not been readily adopted in all simulation 
application areas.   

To support infrastructure effects analysis, we 
propose the application of fuzzy finite state machines 
(FFSM) to model asset state in infrastructure modeling.   
At the simplest level a finite state machine can be 
described as “a collection of inputs, a collection of 
outputs, and a finite collection of states, which describe 
the effect of the various inputs signals.” (Wilson and 
Watkins 1990).   More precisely given the current state 
and a set of inputs, the finite state machine, based upon 
a defined rule set, determines the next state, and maps 
input signals to output signals. A FFSM is the 
implementation of the principles of a finite state 
machine, but allows the system to deal with the reality 
of non-precise or non-crisp sets of state, inputs, and 
outputs.   One of the first descriptions of FFSM’s 
implementation was by Grantner and Patyra (1993) 
which described the used of fuzzy logic state machines 
in VLSI implementation.  A more recent work by 
Grantner et alt (2000) described the use of FFSM in 
addressing ontological control problems and recovery 
actions in large PC-based systems. 

 
3. MODEL DEVELOPMENT 
As discussed in Section 1, one issue in modeling 
phenomena impact and the subsequent effects is that the 
impact that a trigger event imparts on an infrastructure 
item may not be precisely known in terms of both 
immediate and lasting influence.  Multiple methods 
exist to capture this uncertainty.  One method may be to 
use a probabilistic distribution function model using the 
expected (i.e. average) effect or the worst-case scenario 
in modeling.  The method that we propose, however, is 
the incorporation of fuzzy sets to capture the uncertainty 
of effect for individual events and further, to utilize this 
concept to carry forward uncertainty as effects cascade 
forward in time.  

In addition to uncertainty associated with the effect 
of the trigger event, uncertainty may also exist as to the 
exact state of the entity or node in questions.  Due to 
incomplete knowledge or immeasurable status, some 
states may not be fully understood prior to the need to 
model them.  Examples include the physical status of a 
piece of equipment or facility that is neither under the 
direct control nor immediately observable by the 
modeler.  Also consider the example of more subjective 
nodes such as public confidence or public opinion 
concerning particular topics.  Aló et alt. (2002) discuss 
similar issues in while applying fuzzy functions to 
derive optimal decisions in uncertain environments. 

The approach that we have taken is to define a 
node as the tuple: N(I, E, Sp , Sn, O, Fe, Fp)  where 

 
I   = a nonempty finite set of input entities required  
        for node operation 
E  = a nonempty finite set of trigger events 
Sp = a nonempty finite set of present states 
Sn = a nonempty finite set of next states 
O  = a nonempty finite set of output entities resulting 
        from node operation (Fp) 
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Fe  = the mapping of effect of a trigger event on  
        the current node state Sp 
Fp = is the node process associated with the 
        transformation of input (I) to output (O)  
        (i.e. State transition function).   
 
Figure 2 illustrates this concept. 

 
Consider the case where the effect of an event is 

not precisely known.  We will model this uncertainty in 
the form of a fuzzy set and fuzzy mapping of 
consequence.  

Let S = {s1, s2, s3, …sn} be the possible state of 
node N with Sp∈  S and Sn ∈  S.  Let E  = {e1, e2, e3, … 
em} represent possible trigger events.  High-level 
examples of trigger events may include fire, flooding, a 
tornado, component failure, human error, and malicious 
attack. 

As defined earlier, Fe is the impact relation that a 
trigger event will have on the present state, Sp.  Thus Fe: 
S x E → S. Note that the impact of an event depends 
not only on the nature of the event, but may also depend 
on the current state of the system.  Under perfect 
conditions, this relationship would be precisely defined.  
In reality however, uncertainty often exists as the to 
exact nature of the effect. To account for uncertainty, 
define Ωe as the set of fuzzy of potential outcomes (i.e. 
new states) that could result from an effect e.   Further 
define μ as the membership function of S in Ωe,  

 
s.t.    μ(s) =  for s   Ω              (1) 
        μ(s)∈  [0,1] for s  Ω              (2) 
 
So Ω = {s1/μ(s1), s2/μ(s2), …….sn/μ(sn)}.          (3) 
 
 Membership values of μ(si) = 0 are not included in 

the set for brevity.  Now the Fe function becomes a 
fuzzy mapping, Fe: S x E → Ωe where Ωe represents the 

uncertainty of effect for event e. Consider the following 
example.  The node (i.e. asset of interest) is an electrical 
substation described by the following tuple: 
 N(I, E, Sp , Sn, O, Fe, Fp) with 

 
I =   {0 (no electricity), 1(electricity)}; 
S =  {0 (shutdown, requiring repairs),  
         1 (shutdown, no Input power),  
         2 (operational)}; 
O = {0 (no electricity), 1 (electricity)}; 
E =  {0 (flooding to a level > 3 feet), 
         1 (fire in the substation),  
         2 (equipment failure),  
         3 (malicious attack),  
         4 (system repair)} 

 
Fp is given in Table 1. 
 

Table 2. State Transition Matrix 
Sp Input  Sn Output 
0 0 0 0 
0 1 0 0 
1 0 1 0 
1 1 2 1 
2 0 1 0 
2 1 2 1 

 
Consider a flooding event occurs that results in 

localized flooding to a depth of 3 feet at the substation 
of concern.  Based upon damage analysis, the following 
impact matrix represents the state transitions that could 
occur over all possible initial states. 

 
Table 3. Impact Matrix 

  

s n
 =

 0
 

s n
 =

 1
 

s n
 =

 2
 

 sp = 0 1 0 0 
Ωe  = sp = 1 .8 .5 0 

   sp = 2 .7 .5 .3 
 
The rows represent the node’s initial state and the 

columns represent the end state as a result of the event.  
The cells represent the membership value μ(s) for the 
combination (si, sj).  Further let the initial state be 
denoted by the following state matrix   Sp = [0 1 0] to 
represents the level of membership in the current state. 
The end state membership of the event then is denoted 
by Sn = Sp x Ωe = [.8 .5 0]. 

While the end state of the substation is important, 
it is also important to examine this impact on other 
nodes within the interdependent network.  Another 
aspect to evaluate is the effect on node output.  
Consider the mapping from Sn to O as described by O(s) 
= [0 0 1]T. Then the uncertainty of output can be 
described by the following fuzzy set Ωo.  Here Ωo  =  

Figure 2. Node functional representation. 
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[0/.7  0/.5  1/.3] which can be reduced to Ωo  = [0/.7  
1/.3].  

The values of Ωo subsequently provide input to 
another node along the network and hence uncertainty is 
propagated down the system path.   

 
4. PRELIMINARY RESULTS 
As a proof of concept for the integration of fuzzy 
simulation into effects analysis, we constructed an 
infrastructure simulation utilizing fuzzy finite state 
machines.  The framework we used for integrating the 
FSSM was CIMS© (Dudenhoeffer et alt 2006).   

CIMS©, the Critical Infrastructure Modeling 
System, was developed at the Idaho National 
Laboratory to examine the interrelationships between 
infrastructure networks and more specifically, the 
emergent systems behaviors that develop when one or 
more nodes within the system are perturbed.  A discrete 
event simulation, CIMS© uses an agent-based approach 
(ABM) (Rocha 1999) to model infrastructure elements, 
the relations between elements, and individual 
component behavior.  The key characteristic of the 
agent and the simulations is that each agent exists as an 
individual entity which maintains a state, senses input, 
and possesses rules of behavior that act upon the inputs 
and either modify the state or produce an output.  Each 
network within the simulation is modeled as a 

connected graph, G = (N, E), where N represents the 
nodes within the network and E represents the edges 
between the nodes.  Edges also represent the 
relationship, i.e. interdependencies, between 
infrastructures.   

The modification to CIMS© involved replacing 
deterministic process functions with a fuzzy transition 
table and a fuzzy state matrix.  Additionally, where as 
before, input and output flow were crisp quantities, now 
they support passing fuzzy sets between nodes as input 
and output.  Finally, CIMS© supports the insertion of 
events and the creation of event driven scenarios.  This 
was modified to account for fuzzy effects from events. 
A nice feature of the FFSM integration with the CIMS© 
software package is that it allows the simultaneous 
modeling of both crisp and fuzzy relations. 

The state transition algorithm used the Max-Min 
Composition relation (Tsoukalas and Uhrig 1997) to 
calculate the next state, as illustrated 

 
(4) 

 
 

where R1 is the initial system state including the current 
input matrix and R2 is the state transition matrix.  The 
resulting matrix is the next state matrix, which is then 
used to calculate the node’s output.  

[ ] ),/(),(),(
2121 zxzxyxRR RR

ZxX
y

μμ ∧∨≡ ∫o

Figure  3: Building/Facility Fuzzy State Transition Table 

Figure 4: Power Distribution Substation Fuzzy State Transition Table 
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The preliminary model developed to demonstrate 
the application of FFSM’s in the simulation involves an 
evaluation of resident mobility given in a storm damage 
situation.  Specifically we wish to evaluate the behavior 
of residents on evacuating their primarily residence.  
The work presented here does not reflect actual data to 
this point, but reflects a potential framework for 
evaluating this situation.  

Given the area or interest, the first step was to 
model resident behavior in the form of discrete states.  
Here five states were identified for purposes of the 
simulation.  Potential factors contributing to the 
decisions on occupancy that we incorporated into the 
model included electrical power and accessibility (i.e. 
roadway passage) to and from the residences. Figure 3 
provides the transition matrix (R2) used to determine the 
next state.  The next states are represented in the table 
by their membership values.  For example the transition 
from state 5 (Little or No Damage to residence, 
occupancy is maintained) given that Power is available 
and Roads are available Sp → Sn = {4/0.2, 5/0.9}.  
Figure 4 represents the fuzzy state transition table for 
the electric substations.  

 
4.1. Test Case 
The simulation scenario centers on the impact of 
hurricane like winds in an urban setting.  Figure 5 
displays the subset of interest, which has been modeled 
using FFSM’s in CIMS©. 

 
Figure 5: CIMS© network of fuzzy nodes and edges. 
 

The primary nodes of interest are identified by 
their ID numbers in the figure and represent key 
facilities and electrical power substations.  The green 
edges between then nodes represent the electric power 
supply to the facilities.  The CIMS© framework with the 
fuzzy nodes and relationships allows the user to 
examine the propagation of uncertainty along system 
dependent relationships.  Prior to this added feature, 
results were presented as crisp state output with no 
uncertainty representation.  

 

Table 4. Run A – Base Case 
80140  Substation   Labarre 
    state: 0  value:     0 
    state: 1  value:     0 
    state: 2  value:     1 
    Input power off:     0 
    Input power  on:     1 
    NEXT STATE 
    state: 0  value:     0 
    state: 1  value:     0 
    state: 2  value:     1 
    OUTPUT 
    Power Off:     0 
    Power On :     1  
13071  Saint Christopher School 
    state: 0  value:     0 
    state: 1  value:     0 
    state: 2  value:     0 
    state: 3  value:     0 
    state: 4  value:   0.2 
    state: 5  value:   0.8                 
    Input power off:     0 
    Input power  on:     1 
    NEXT STATE             
    state: 0  value:     0 
    state: 1  value:     0 
    state: 2  value:     0 
    state: 3  value:     0 
    state: 4  value:   0.2 
    state: 5  value:   0.8                                                   

 
Table 5. Run B – Fuzzy Impact Event 

80140  Substation   Labarre 
    state: 0  value:   0.7 
    state: 1  value:     0 
    state: 2  value:   0.4                  
    Input power off:     0 
    Input power  on:     1 
    NEXT STATE             
    state: 0  value:   0.7 
    state: 1  value:     0 
    state: 2  value:   0.4 
    OUTPUT                 
    Power Off:   0.7 
    Power On :   0.4 
13071  Saint Christopher School 
    state: 0  value:     0 
    state: 1  value:     0 
    state: 2  value:     0 
    state: 3  value:     0 
    state: 4  value:   0.5 
    state: 5  value:   0.5                  
    Input power off:   0.7 
    Input power  on:   0.4 
    NEXT STATE             
    state: 0  value:     0 
    state: 1  value:     0 
    state: 2  value:     0 
    state: 3  value:     0 
    state: 4  value:   0.5 
    state: 5  value:   0.5                                                 

 
The first simulation run, Run A, is the base case, 

which shows all substations operating without event or 
disturbance.  The purpose of this run was just to show 
the program consistency.  Here Table 4 shows the 
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results for two nodes, substation 80140 and building 
13071. 

The next run, Run B, illustrates the insertion of a 
fuzzy event at Substation 80140 which alters its state to 
Sn = {0/0.7, 1/0.4, 2/0.2} and examines the propagation 
of the uncertainty of effect forward.  The resulting 
impact on the substation and the cascading impact on 
Node 13071 is shown in Table 5. 

 
5. CONCLUSION 
In this paper we have discussed the research area of 
effects analysis and the challenges in modeling the 
uncertainty associated with unknown or imprecise 
cause-effect relationships.  As one possible modeling 
tool, we demonstrated the application of fuzzy finite 
state machines to capture and propagate uncertainty 
across multiple effects. This principle was demonstrated 
in a simulation package called CIMS©.  Preliminary 
results show that this has potential in providing decision 
makers with a means for better understanding the 
uncertainty and possible cause-effect paths resulting 
from infrastructure events. 
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