
 
ABSTRACT 

Traditionally, efficient shading and light mapping has been 
an obstacle in computer graphics. Reaching desired realism 
levels requires a high source consume and sometimes it 
doesn’t accomplish existing expectative.       
     The intention of this work is adding more realism to vir-
tual scenes through dynamic light using GPU. 
     Starting off of the study of many algorithms, it proposes 
many algorithms to work whit light through shader (pro-
gram used to determine the final surface properties of an 
object or image. This can include arbitrarily complex de-
scriptions of light absorption and diffusion, texture map-
ping, reflection and refraction, shadowing, surface dis-
placement and post-processing effects)but we’ll propound 
the Spherical Harmonics algorithms and implemented in 
OpenGL Shading Language (GLSL). 
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INTRODUCTION 

The recent trend in graphics hardware has been to replace 
fixed functionality with programmability in areas that have 
grown exceedingly complex.  
     Two such areas are vertex processing and fragment 
processing. Vertex processing involves the operations that 
occur at each vertex, most notably transformation and 
lighting. Fragments are per-pixel data structures that are 
created by the rasterization of graphics primitives.  
     A fragment contains all the data necessary to update a 
single location in the frame buffer. Fragment processing 
consists of the operations that occur on a per-fragment ba-
sis, most notably reading from texture memory and apply-
ing the texture value(s) at each fragment.  
     With the OpenGL Shading Language, the fixed func-
tionality stages for vertex processing and fragment proc-
essing have been augmented with programmable stages 
that can do everything the fixed functionality stages can 

doand a whole lot more. The OpenGL Shading Language 
allows application programmers to express the processing 
that occurs at those programmable points of the OpenGL 
pipeline. 
     The OpenGL Shading Language code that is intended 
for execution on one of the OpenGL programmable proc-
essors is called a shader. The term OpenGl shader is some-
times used to differentiate a shader written in the OpenGL 
Shading Language from a shader written in another shad-
ing language such as RenderMan. 
     In this article I explore how the OpenGL Shading Lan-
guage can help us implement such models so that they can 
execute at interactive rates on programmable graphics 
hardware. We look at some lighting models that provide 
more flexibility and give more realistic results than those 
built into OpenGL's fixed functionality rendering pipeline. 
Much has been written on the topic of lighting in computer 
graphics. We only examine a few methods an propound the 
implementation of one . Hopefully, you'll be inspired to try 
implementing some others on your own. 
 

BASIC 

Why shader? 

By exposing support for traditional rendering mechanisms, 
OpenGL has evolved to serve the needs of a fairly broad 
set of applications. If your particular application was well 
served by the traditional rendering model presented by 
OpenGL, you may never need to write shaders. But if you 
have ever been frustrated because OpenGL did not allow 
you to define area lights, or because lighting calculations 
are performed per-vertex rather than per-fragment or, if 
you have run into any of the many limitations of the tradi-
tional OpenGL rendering model, you may need to write 
your own OpenGL shader.  
     With each new generation of graphics hardware, more 
complex rendering techniques can be implemented as 
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OpenGL shaders and can be used in real-time rendering 
applications. Here's a brief list of what's possible with 
OpenGL shaders: 
 

• Increasingly realistic lighting effects area lights, 
soft shadows 

• Advanced rendering effects global illumination, 
ray-tracing, 

• Animation effects key frame interpolation, parti-
cle systems, procedurally defined motion 

• User programmable anti-aliasing methods 
• General computation sorting, mathematical mod-

elling, fluid dynamics, and so on 
 
     Many of these techniques have been available before 
now only through software implementations. If they were 
at all possible through OpenGL, they were possible only in 
a limited way. The fact that these techniques can now be 
implemented with hardware acceleration provided by dedi-
cated graphics hardware means that rendering performance 
can be increased dramatically and at the same time the 
CPU can be off-loaded so that it can perform other tasks. 

LIGTHING  

In the real world, we see things because they reflect light 
from a light source or because they are light sources them-
selves. In computer graphics, just as in real life, we won't 
be able to see an object unless it is illuminated or emits 
light. To generate more realistic images, we need to have 
more realistic models for illumination, shadows, and ref-
lection than those we've discussed so far.  

Hemisphere Lighting 

We know at the fixed functionality lighting model built in-
to OpenGL and developed shader code to mimic the fixed 
functionality behavior. However, this model has a number 
of flaws, and these flaws become more apparent as we 
strive for more realistic rendering effects. One problem is 
that objects in a scene do not typically receive all their il-
lumination from a small number of specific light sources. 
Interreflections between objects often have noticeable and 
important contributions to objects in the scene. The tradi-
tional computer graphics illumination model attempts to 
account for this phenomena through an ambient light term. 
However, this ambient light term is usually applied equally 
across an object or an entire scene. The result is a flat and 
unrealistic look for areas of the scene that are not affected 
by direct illumination. 
     Another problem with the traditional illumination mod-
el is that light sources in real scenes are not point lights or 
even spotlightsthey are area lights. Consider the indirect 
light coming in from the window and illuminating the floor 
and the long fluorescent light bulbs behind a rectangular 

translucent panel. For an even more common case, consid-
er the illumination outdoors on a cloudy day. In this case, 
the entire visible hemisphere is acting like an area light 
source. In several presentations and tutorials, Chas Boyd, 
Dan Baker, and Philip Taylor of Microsoft described this 
situation as Hemisphere Lighting and discussed how to 
implement it in DirectX. Let's look at how we might create 
an OpenGL shader to simulate this type of lighting envi-
ronment. 
     The idea behind hemisphere lighting is that we model 
the illumination as two hemispheres. The upper hemis-
phere represents the sky, and the lower hemisphere 
represents the ground. A location on an object with a sur-
face normal that points straight up gets all of its illumina-
tion from the upper hemisphere, and a location with a sur-
face normal pointing straight down gets all of its 
illumination from the lower hemisphere (see Figure 1). By 
picking appropriate colors for the two hemispheres, we can 
make the sphere look as though locations with normals 
pointing up are illuminated and those with surface normals 
pointing down are in shadow. 

 

 
Figure 1: A sphere illuminated using the hemisphere 

lighting model 
     To compute the illumination at any point on the surface, 
we must compute the integral of the illumination received 
at that point: 
 
Color = a · SkyColor + (1 - a) · GroundColor 
where 
a = 1.0 - (0.5 · sin(q)) for q < 90° 
a = 0.5 · sin(q) for q > 90° 
q = angle between surface normal and north pole direction 

 
But we can actually calculate a in another way that is simp-
ler but roughly equivalent: 

 
a = 0.5 + (0.5 · cos(q)) 
 
     This approach eliminates the need for a conditional. 
Furthermore, we can easily compute the cosine of the angle 
between two unit vectors by taking the dot product of the 
two vectors. This is an example of what Jim Blinn likes to 
call "the ancient Chinese art of chi ting." In computer 
graphics, if it looks good enough, it is good enough. It 
doesn't really matter whether your calculations are physi-
cally correct or a colossal cheat.  
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     One of the issues with this model is that it doesn't ac-
count for self-occlusion. Regions that should really be in 
shadow because of the geometry of the model appear too 
bright. 
 

Image-Based Lighting 

If we're trying to achieve realistic lighting in a computer 
graphics scene, why not just use an environment map for 
the lighting? This approach to illumination is called Image-
Based Lighting; it has been popularized in recent years by 
researcher Paul Debevec at the University of Southern Cal-
ifornia. Churches and auditoriums may have dozens of 
light sources on the ceiling. Rooms with many windows 
also have complex lighting environments. It is often easier 
and much more efficient to sample the lighting in such en-
vironments and store the results in one or more environ-
ment maps than it is to simulate numerous individual light 
sources. 
 
     The steps involved in image-based lighting are: 
 

• Use a Light Probe (e.g., a reflective sphere) to 
capture (e.g., photograph) the illumination that 
occurs in a real-world scene. The captured omni-
directional, high-dynamic range image is called a
Light Probe Image. 

• Use the light probe image to create a representa-
tion of the environment (e.g., an environment 
map). 

• Place the synthetic objects to be rendered inside 
the environment. 

• Render the synthetic objects by using the repre-
sentation of the environment created in step 2. 

 
     On his Web site (http://www.debevec.org/), Debevec 
offers a number of useful things to developers. For one, he 
has made available a number of images that can be used as 
high-quality environment maps to provide realistic lighting 
in a scene. These images are high dynamic range (HDR) 
images that represent each color component with a 32-bit 
floating-point value. Such images can represent a much 
greater range of intensity values than can 8-bit-per-
component images. For another, he makes available a tool 
called HDRShop that manipulates and transforms these 
environment maps. Through links to his various publica-
tions and tutorials, he also provides step-by-step instruc-
tions on creating your own environment maps and using 
them to add realistic lighting effects to computer graphics 
scenes. 
     Following Debevec's guidance, I purchased a 2-inch 
chrome steel ball from McMaster-Carr Supply Company 
(http://www.mcmaster.com). We used this ball to capture a 

light probe image from the center of the square outside our 
office building in downtown Fort Collins, Colorado. We 
then used HDRShop to create a lat-long environment map
and a cube map of the same scene. The cube map and lat-
long map can be used to perform environment mapping.
That shader simulated a surface with an underlying base 
color and diffuse reflection characteristics that was covered 
by a transparent mirror-like layer that reflected the envi-
ronment flawlessly. 
     We can simulate other types of objects if we modify the 
environment maps before they are used. A point on the sur-
face that reflects light in a diffuse fashion reflects light 
from all the light sources that are in the hemisphere in the 
direction of the surface normal at that point. We can't real-
ly afford to access the environment map a large number of 
times in our shader. What we can do instead is similar to 
what we discussed for hemisphere lighting. Starting from 
our light probe image, we can construct an environment 
map for diffuse lighting. Each texel in this environment 
map will contain the weighted average (i.e., the convolu-
tion) of other texels in the visible hemisphere as defined by 
the surface normal that would be used to access that texel 
in the environment. 
     Again, HDRShop has exactly what we need. We can 
use HDRShop to create a lat-long image from our original 
light probe image. We can then use a command built into 
HDRShop that performs the necessary convolution. This 
operation can be time consuming, because at each texel in 
the image, the contributions from half of the other texels in 
the image must be considered. Luckily, we don't need a 
very large image for this purpose. The effect is essentially 
the same as creating a very blurry image of the original 
light probe image. Since there is no high frequency content 
in the computed image, a cube map with faces that are 64 x 
64 or 128 x 128 works just fine. 
     A single texture access into this diffuse environment 
map provides us with the value needed for our diffuse ref-
lection calculation. What about the specular contribution? 
A surface that is very shiny will reflect the illumination 
from a light source just like a mirror. A single point on the 
surface reflects a single point in the environment. For sur-
faces that are rougher, the highlight defocuses and spreads 
out. In this case, a single point on the surface reflects sev-
eral points in the environment, though not the whole visi-
ble hemisphere like a diffuse surface. HDRShop lets us 
blur an environment map by providing a Phong exponenta 
degree of shininess. A value of 1.0 convolves the environ-
ment map to simulate diffuse reflection, and a value of 50 
or more convolves the environment map to simulate a 
somewhat shiny surface. 
     The shaders that implement these concepts end up being 
quite simple and quite fast. In the vertex shader, all that is 
needed is to compute the reflection direction at each ver-
tex. This value and the surface normal are sent to the frag-
ment shader as varying variables. They are interpolated 
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across each polygon, and the interpolated values are used 
in the fragment shader to access the two environment maps 
in order to obtain the diffuse and the specular components. 
The values obtained from the environment maps are com-
bined with the object's base color to arrive at the final color 
for the fragment.  

The ÜberLight Shader 

We've discussed lighting algorithms that simulate the ef-
fect of global illumination for more realistic lighting ef-
fects. Traditional point, directional, and spotlights can be 
used in conjunction with these global illumination effects. 
However, the traditional light sources leave a lot to be de-
sired in terms of their flexibility and ease of use. 
     Ronen Barzel of Pixar Animation Studios wrote a paper 
in 1997 that described a much more versatile lighting mod-
el specifically tailored for the creation of computer-
generated films. This lighting model has so many features 
and controls compared to the traditional graphics hardware 
light source types that its RenderMan implementation be-
came known as the "überlight" shader (i.e., the lighting 
shader that has everything in it except the proverbial kitch-
en sink). Larry Gritz wrote a public domain version of this 
shader that was published in Advanced RenderMan: Creat-
ing CGI for Motion Pictures, which he coauthored with 
Tony Apodaca. A Cg version of this shader was published 
by Fabio Pellacini and Kiril Vidimice of Pixar in the book 
GPU Gems, edited by Randima Fernando. The full-blown 
überlight shader has been used successfully in a variety of 
computer-generated films, including Toy Story, Monsters, 
Inc., and Finding Nemo. Because of the proven usefulness 
of the überlight shader, this section looks at how to imple-
ment its essential features in the OpenGL Shading Lan-
guage. 
     In movies, lighting helps to tell the story in several dif-
ferent ways. Sharon Calahan gives a good overview of this 
process in the book Advanced RenderMan: Creating CGI 
for Motion Pictures. This description includes five impor-
tant fundamentals of good lighting design that were de-
rived from the book Matters of Light & Depth by Ross 
Lowell: 
 

• Directing the viewer's eye 
• Creating depth 
• Conveying time of day and season 
• Enhancing mood, atmosphere, and drama 
• Revealing character personality and situation 

 
     Because of the importance of lighting to the final prod-
uct, movies have dedicated lighting designers. To light 
computer graphics scenes, lighting designers must have an 
intuitive and versatile lighting model to use. 
     For the best results in lighting a scene, it is crucial to 
make proper decisions about the shape and placement of 

the lights. For the überlight lighting model, lights are as-
signed a position in world coordinates. The überlight shad-
er uses a pair of superellipses to determine the shape of the 
light. A superellipse is a function that varies its shape from 
an ellipse to a rectangle, based on the value of a roundness 
parameter. The superellipse function is defined as 

 

 
     As the value for d nears 0, this function becomes the 
equation for a rectangle, and when d is equal to 1, the func-
tion becomes the equation for an ellipse. Values in between 
create shapes in between a rectangle and an ellipse, and 
these shapes are also useful for lighting. This is referred to 
in the shader as barn shaping since devices used in the 
theater for shaping light beams are referred to as barn 
doors. 
     It is also desirable to have a soft edge to the light, in 
other words, a gradual drop-off from full intensity to zero 
intensity. We accomplish this by defining a pair of nested 
superellipses. Inside the innermost superellipse, the light 
has full intensity. Outside the outermost superellipse, the 
light has zero intensity. In between, we can apply a gradual 
transition by using the smoothstep function.  
     Two more controls that add to the versatility of this 
lighting model are the near and far distance parameters, al-
so known as the cuton and cutoff values. These define the 
region of the beam that actually provides illumination (see
Figure 2). Again, smooth transition zones are desired so 
that the lighting designer can control the transition. Of 
course, this particular control has no real-world analogy, 
but it has proved to be useful for softening the lighting in a 
scene and preventing the light from reaching areas where 
no light is desired.  

 

 
Figure 2: Effects of the near and far distance parame-

ters for the überlight shader 
 
     The überlight shader as described by Barzel and Gritz 
actually has several additional features. It can support mul-
tiple lights, but our example shader showed just one for 
simplicity. The key parameters can be defined as arrays, 
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and a loop can be executed to perform the necessary com-
putations for each light source. In the following chapter, 
we show how to add shadows to this shader. 

Lighting with Spherical Harmonics  

In 2001, Ravi Ramamoorthi and Pat Hanrahan presented a 
method that uses spherical harmonics for computing the 
diffuse lighting term. This method reproduces accurate dif-
fuse reflection, based on the content of a light probe image, 
without accessing the light probe image at runtime.  

The light probe image is pre-processed to produce co-
efficients that are used in a mathematical representation of 
the image at runtime. The mathematics behind this ap-
proach is beyond the scope of this book (see the references 
at the end of this chapter if you want all the details). In-
stead, we lay the necessary groundwork for this shader by 
describing the underlying mathematics in an intuitive fash-
ion. The result is remarkably simple, accurate, and realis-
tic, and it can easily be codified in an OpenGL shader. This 
technique has already been used successfully to provide 
real-time illumination for games and has applications in 
computer vision and other areas as well. 

Spherical harmonics provides a frequency space repre-
sentation of an image over a sphere. It is analogous to the 
Fourier transform on the line or circle. This representation 
of the image is continuous and rotationally invariant. Using 
this representation for a light probe image, Ramamoorthi 
and Hanrahan showed that you could accurately reproduce 
the diffuse reflection from a surface with just nine spheri-
cal harmonic basis functions. These nine spherical harmon-
ics are obtained with constant, linear, and quadratic poly-
nomials of the normalized surface normal. 

Intuitively, we can see that it is plausible to accurately 
simulate the diffuse reflection with a small number of basis 
functions in frequency space since diffuse reflection varies 
slowly across a surface. With just nine terms used, the av-
erage error over all surface orientations is less than 3% for 
any physical input lighting distribution. With Debevec's 
light probe images, the average error was shown to be less 
than 1% and the maximum error for any pixel was less 
than 5%. 

Each spherical harmonic basis function has a coeffi-
cient that depends on the light probe image being used. 
The coefficients are different for each colour channel, so 
you can think of each coefficient as an RGB value. A pre-
processing step is required to compute the nine RGB coef-
ficients for the light probe image to be used. Ramamoorthi 
makes the code for this pre-processing step available for 
free on his Web site. I used this program to compute the 
coefficients for all the light probe images in Debevec's 
light probe gallery as well as the Old Town Square light 
probe image and summarized the results in Figure 3.  

 

Figure 3: Spherical harmonic coefficients for light 
probe images 

 
     The equation for diffuse reflection using spherical har-
monics is 

 
Diffuse = c1 L22 (x2 - y2) + c3 L20 z2 + c4 L20 - c5 L20 + 2c1
(L2 - 2 xy + L21 xz + L2 - 1 yz) + 2c2 (L11 x + L1 - 1 y + L10 z 
 
(1) 
 
     The constants c1c5 result from the derivation of this 
formula and are shown in the vertex shader code in Listing 
1. The L coefficients are the nine basis function coeffi-
cients computed for a specific light probe image in the pre-
processing phase. The x, y, and z values are the coordi-
nates of the normalized surface normal at the point that is 
to be shaded. Unlike low dynamic range images (e.g., 8 
bits per color component) that have an implicit minimum 
value of 0 and an implicit maximum value of 255, high dy-
namic range images represented with a floating-point value 
for each color component don't contain well-defined mini-
mum and maximum values.  
     The minimum and maximum values for two HDR im-
ages may be quite different from each other, unless the 
same calibration or creation process was used to create 
both images. It is even possible to have an HDR image that 
contains negative values. For this reason, the vertex shader 
contains an overall scaling factor to make the final effect 
look right. 

The vertex shader that encodes the formula for the 
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nine spherical harmonic basis functions is actually quite 
simple. When the compiler gets hold of it, it becomes sim-
pler still. An optimizing compiler typically reduces all the 
operations involving constants. The resulting code is quite 
efficient because it contains a relatively small number of 
addition and multiplication operations that involve the 
components of the surface normal. 

 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Listing 1 Vertex shader for spherical harmonics light-
ing 

 
 
 
 

 
 

 
 
 
 
Listing 2 Fragment shader for spherical harmonics 
lighting 
 
     Once again, our fragment shader has very little work to 
do. Because the diffuse reflection typically changes slowly, 
for scenes without large polygons we can reasonably com-
pute it in the vertex shader and interpolate it during rasteri-
zation. As with hemispherical lighting, we can add proce-
durally defined point, directional, or spotlights on top of 
the spherical harmonics lighting to provide more illumina-
tion to important parts of the scene.  

varying vec3 DiffuseColor; 
uniform float ScaleFactor; 
 
const float C1 = 0.429043; 
const float C2 = 0.511664; 
const float C3 = 0.743125; 
const float C4 = 0.886227; 
const float C5 = 0.247708; 
 
// Constants for Old Town Square 
lighting 
const vec3 L00  = vec3( 0.871297,  
0.875222,  0.864470); 
const vec3 L1m1 = vec3( 0.175058,  
0.245335,  0.312891); 
const vec3 L10  = vec3( 0.034675,  
0.036107,  0.037362); 
const vec3 L11  = vec3(-0.004629, -
0.029448, -0.048028); 
const vec3 L2m2 = vec3(-0.120535, -
0.121160, -0.117507); 
const vec3 L2m1 = vec3( 0.003242,  
0.003624,  0.007511); 
const vec3 L20  = vec3(-0.028667, -
0.024926, -0.020998); 
const vec3 L21  = vec3(-0.077539, -
0.086325, -0.091591); 
const vec3 L22  = vec3(-0.161784, -
0.191783, -0.219152); 

 
void main() 
{ 
    vec3 tnorm    = normal-
ize(gl_NormalMatrix * gl_Normal); 
     
    DiffuseColor =  C1 * L22 * 
(tnorm.x * tnorm.x - tnorm.y * 
tnorm.y) + 
                    C3 * L20 * 
tnorm.z * tnorm.z + 
                    C4 * L00 - 
                    C5 * L20 + 
                    2.0 * C1 * L2m2 * 
tnorm.x * tnorm.y + 
                    2.0 * C1 * L21  * 
tnorm.x * tnorm.z + 
                    2.0 * C1 * L2m1 * 
tnorm.y * tnorm.z + 
                    2.0 * C2 * L11  * 
tnorm.x + 
                    2.0 * C2 * L1m1 * 
tnorm.y +    
                    2.0 * C2 * L10  * 
tnorm.z; 
     
    DiffuseColor *= ScaleFactor; 
     
    gl_Position = ftransform(); 
} 
 

varying vec3 DiffuseColor; 
 
void main() 
{ 
    gl_FragColor = vec4(DiffuseColor, 
1.0); 
} 
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     Coefficients for some of Paul Debevec's light probe im-
ages provide even greater color variations. We could make 
the diffuse lighting from the spherical harmonics computa-
tion more subtle by blending it with the object's base color. 

CONCLUSION  

Now the programmable graphics hardware has freed us 
from the shackles of the traditional hardware lighting equa-
tions, we are free to implement and experiment with a va-
riety of new techniques. Some of the techniques we ex-
plored are both faster and more realistic than the traditional 
methods. 
     Such light probe images can either be preprocessed and 
used to compute spherical harmonic basis function coeffi-
cients that can be used for simple and high-performance 
lighting. 
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