
MODELING OF HEURISTIC OPTIMIZATION ALGORITHMS

Stefan Wagner(a), Gabriel Kronberger(b), Andreas Beham(c), Stephan Winkler(d), Michael Affenzeller(e)

(a), (b), (c), (d), (e)Heuristic and Evolutionary Algorithms Laboratory
School of Informatics, Communications and Media – Hagenberg

Upper Austria University of Applied Sciences
Softwarepark 11, A-4232 Hagenberg, Austria

(a)stefan.wagner@heuristiclab.com, (b)gabriel.kronberger@heuristiclab.com, (c)andreas.beham@heuristiclab.com,

(d)stephan.winkler@heuristiclab.com, (e)michael.affenzeller@heuristiclab.com

ABSTRACT
The definition of a generic algorithm model for
representing arbitrary heuristic optimization algorithms
is one of the most challenging tasks when developing
heuristic optimization software systems. As a high
degree of flexibility and a large amount of reusable
code are requirements that are hard to fulfill together,
existing frameworks often lack of either of them to a
certain extent. To overcome these difficulties the
authors present a generic algorithm model not only
capable of representing heuristic optimization but that
can be used for modeling arbitrary algorithms. This
model can be used as a meta-model for heuristic
optimization algorithms, enabling users to represent
custom algorithms in a flexible way by still providing a
broad spectrum of reusable algorithm building blocks.

Keywords: heuristic optimization, algorithm modeling,
software engineering, software tools

1. INTRODUCTION
In the last decades a steady increase of computational
resources and concurrently an impressive drop of
hardware prices could be observed. Nowadays, very
powerful computer systems are found in almost every
company or research institution revealing a processing
power one could only dream of a few years ago. This
trend opens the door for attacking complex optimization
problems from various domains that were not solvable
in the past. Concerning problem solving methodologies
especially heuristic algorithms are very successful in
that sense, as they provide a reasonable compromise
between solution quality and required runtime.

In the research area of heuristic algorithms a broad
spectrum of optimization techniques has been
developed. In addition to problem-specific heuristics,
particularly the development of meta-heuristics is a very
active field of research as these algorithms represent
generic methods that can be used for solving many
different optimization problems. Thereby a huge variety
of often nature inspired archetypes has been used as a
basis for developing new optimization paradigms like
evolutionary algorithms, ant systems, particle swarm

optimization, tabu search, or simulated annealing.
Several publications show successful applications of
such meta-heuristics in various problem domains. A
recent overview is for example given in (Doerner,
Gendreau, Greistorfer, Gutjahr, Hartl, and Reimann
2007).

Today, this broad spectrum of different algorithmic
concepts makes it more and more difficult for
researchers to compare new algorithms with existing
ones to show advantageous properties of some new
approach. As most research puts a focus on one
particular heuristic optimization paradigm, comparisons
with other algorithms are often not quite fair and
objective. In many cases a thoroughly optimized
algorithm containing cutting-edge concepts is compared
with standard and non-optimized algorithms of other
paradigms representing research know-how that is
several years old.

One of the reasons for these difficulties is that
there is no common model for heuristic optimization
algorithms in general that can be used to represent,
execute and compare arbitrary algorithms. Many
existing software frameworks focus on one or a few
particular optimization paradigms and miss the goal of
providing an infrastructure generic enough to represent
all different kinds of algorithms.

In this paper the authors try to overcome this
problem by shifting the layer of abstraction one level
up. Instead of trying to incorporate different heuristic
optimization algorithms into a common model, a
generic algorithm (meta-)model is presented that is
capable of representing not only heuristic optimization
but arbitrary algorithms. By this means the model can
be used for developing custom algorithm models for
various optimization paradigms. Furthermore, by
considering aspects like parallelism or user interaction
on different layers of abstraction the presented
algorithm model can serve as a basis for development of
a next generation heuristic optimization environment
that can be used by many researchers to rapidly develop
and fairly compare their algorithms.

106

2. EXISTING SOFTWARE SYSTEMS FOR
HEURISTIC OPTIMIZATION

Today, modern concepts of software engineering like
object-oriented or component-oriented programming
represent the state of the art for creating complex
software systems by providing a high level of code
reuse, good maintainability and a high degree of
flexibility and extensibility (Johnson and Foote 1988).
However, such approaches are not yet established on a
broad basis in the area of heuristic optimization, as this
field is much younger than classical domains of
software systems (like word processing, spread sheets,
image processing, or integrated development
environments). Most systems for heuristic optimization
are one man projects and are developed by researchers
or students to realize one or a few algorithms for
attacking a specific problem. Naturally, when a
software system is developed mainly for personal use or
a very small, well known and personally connected user
group, software quality aspects like reusability,
flexibility, genericity, documentation and a clean design
are not the primer concern of developers. As a
consequence, these applications still suffer from a quite
low level of maturity seen from a software engineering
point of view.

In the last years and with the ongoing success of
heuristic algorithms also in commercial areas, the
heuristic optimization community started to be aware of
this situation. Advantages of well designed, powerful,
flexible and ready-to-use heuristic optimization
frameworks were identified and discussed in several
publications like (Voß and Woodruff 2002; Jones,
McKeown, and Rayward-Smith 2002; Gagne and
Parizeau 2006). Furthermore, some research groups
started to head for these goals and began redesigning
existing or developing new heuristic optimization
software systems which were promoted as flexible and
powerful black or white box frameworks available and
useable for a broad group of users in the scientific as
well as in the commercial domain. In comparison to the
systems available before, main advantages of these
frameworks are on the one hand a wide range of ready-
to-use classical algorithms, solution representations,
manipulation operators and benchmark problems which
make it easy to jump into the area of heuristic
optimization and to start experimenting and comparing
various concepts. On the other hand a high degree of
flexibility due to a clean object-oriented design makes it
easy for users to implement custom extensions like
specific optimization problems or algorithmic ideas.

One of the most challenging tasks in the
development of such a general purpose heuristic
optimization framework is the definition of an object
model representing arbitrary heuristic optimization
paradigms. On the one hand this model has to be
flexible and extensible to a very high degree so that
users can integrate non-standard algorithms that often
do not fit into existing paradigms exactly. On the other
hand this model should be very fine granular so that a
broad spectrum of existing classical algorithms can be

represented in form of algorithm modules. These
modules can then serve as building blocks to realize
different algorithm variations or completely new
algorithms with a high amount of reusable code.

One main question is on which level of abstraction
such a model should be defined. A high level of
abstraction leads to large building blocks and a very
flexible system. A lower level of abstraction supports
reusability by providing many small building blocks,
but the structure of algorithms has to be predefined
more strictly in that case which reduces flexibility.

Taking a look at several existing frameworks for
heuristic optimization, it can be seen that this question
has been answered in quite different ways. For example,
in the Templar framework developed by Martin Jones
and his colleagues at the University of East Anglia
(Jones, McKeown, and Rayward-Smith 2002) a very
high level of abstraction has been realized. In Templar
each algorithm is represented as so-called engines.
Although, the framework supports distribution,
hybridization and cooperation of engines, no more fine
granular representation of algorithms is considered.
Therefore, when a new algorithm with just a slight
modification of an existing one is required, the engine
of the existing algorithm has to be copied and modified
leading to code duplication and less maintainability.

As another example the HotFrame framework
developed by Andreas Fink and his colleagues at the
University of Hamburg (Fink and Voß 2002) provides a
very low level of abstraction. HotFrame contains a large
amount of generic C++ classes that can be put together
to represent an algorithm. However, in that way the
basic algorithm model is more strictly predefined
forcing users to fit their custom algorithms into that
class structure. Furthermore, due to the complexity of
the model the framework also suffers from a quite steep
learning curve.

Obviously neither a high nor a low level of
abstraction is able to fulfill both, a high degree of
flexibility and reusability of code, as these two
requirements can be considered as mutually exclusive.

3. GENERIC ALGORITHM MODEL
In order to overcome this problem the authors decided
to use a different approach. Instead of trying to develop
an algorithm model representing all different kinds of
heuristic optimization algorithms, a generic algorithm
(meta-)model inspired by classical programming
languages is presented in this paper. This model is
generic enough to represent not only heuristic
optimization techniques but all different kinds of
algorithms in general.

On top of this generic algorithm model more
specific models for representing heuristic optimization
algorithms can be defined. These specific models do not
have to be hard-coded in a framework though, but can
be defined on the user level. A large variety of different
algorithm models can be realized, opening the door for
each user to either reuse an existing one or to create an
own model if necessary. By shifting the model one

107

layer up, users do not need to fit custom algorithms into
a single fixed model but can fit the model itself to their
needs in order to be able to represent their algorithms.

From an abstract point of view an algorithm is a
sequence of steps (operations, instructions, statements)
describing manipulation of data (variables) that is
finally executed by a machine (or human).
Consequently, these three aspects (data, operators and
execution) represent the core components that have to
be represented by the model and are considered in the
following sections.

3.1. Data Model
In classical programming languages variables are used
to represent data values manipulated in an algorithm.
Variables link a data value with a (human readable)
name and (optionally) a data type so that they can be
referenced in the statements and instructions
manipulating the data. This concept is also taken up in
the data model. A variable object is a simple key-value-
pair containing a name (represented as a string) and a
value (an arbitrary object). The data type of a variable's
value doesn't have to be fixed explicitly but is given by
the type of the value itself.

In a typical heuristic optimization algorithm a lot
of different data values and consequently also variables
are used. Hence, in addition to data values and variables
special objects called scopes are needed for variable
management to keep a clear structure. Each scope can
hold an arbitrary number of variables. To access a
variable in a scope the variable name is used as an
identifier, so each variable has to have a unique name in
each scope it is contained.

In the domain of heuristic optimization hierarchical
structures are very common. For example, in terms of
evolutionary computation, an environment contains
several populations, each population contains
individuals (solutions) and these solutions may consist
of different solution parts. Furthermore, hierarchical
structures are not only very suitable in the area of
heuristic optimization but in general are used to
assemble complex data structures by combining simple
ones. As a consequence it is quite reasonable to
combine scopes in a hierarchical way to represent such
layers of abstraction. Each scope may contain any
number of sub-scopes leading to an n-ary tree structure.
For example one scope representing a set of solutions
(population) may contain several other (sub-)scopes
representing the solutions themselves.

When retrieving a variable from a scope this
hierarchical structure of scopes is also taken into
account. If a variable (identified by its name) is not
found in a scope, the variable lookup mechanism
continues searching for the variable in the parent scope
of the current scope. The lookup is continued as long as
the variable is not found and as long as there is another
parent scope left (i.e. until the root scope is reached).
Consequently, each variable in a scope is also "visible"
in all sub-scopes of that scope. However, if another
variable with the same name is added in one of the sub-

scopes, it hides the original one (due to the lookup
procedure). Note that this behavior is very similar to
scopes in classical programming languages. That is also
the reason why the name "scope" was chosen.

Based on this abstract representation of data, the
next section describes operators which are applied on
scopes to manipulate data. Therefore, operators
represent the fundamental building blocks of
algorithms. Due to the hierarchical nature of scopes
operators may be applied on different abstraction levels
leading to several essential benefits concerning
parallelization discussed later on.

3.2. Operator Model
Regarding to the definition of an algorithm, the next
topic to be defined are steps. Each algorithm is a
sequence of clearly defined, unambiguous and
executable instructions. These atomic building blocks of
algorithms are called operators and are of course also
considered as objects in a generic algorithm model. In
analogy to classical programming languages these
operators can be seen as statements that represent
instructions or procedure calls.

In general, operators fulfill two major tasks: On the
one hand an operator can access and manipulate a
scope's variables or sub-scopes and on the other hand an
operator may define the further execution flow (i.e.
which operators are executed next). To support
genericity of operators and to enable reuse, operators
have to be decoupled from concrete variables. For that
reason a mechanism is used that is similar to procedure
calls.

As an example consider a simple increment
operator that increases the value of an integer variable
by one. Inside the operator it is defined that the operator
is expecting a variable of a specific type (in our case an
integer) and how this variable is going to be used. When
implementing an operator, formal names are used to
identify variables but these formal names do not
correspond to any real variable name. The concrete
variable remains unknown until the operator is applied
on a scope. By this means an increment operator can be
used to increment any arbitrary integer variable. When
adding an operator to an algorithm the user has to define
a mapping between the formal variable names used
inside the operator and the real variable names that
should be used when the operator is finally executed.
When a variable is accessed by the operator the
variable's formal name is automatically translated into
the actual name, which is then used to retrieve the
variable from the scope. As a consequence meta-
information has to be provided by an operator to declare
on which variables the operator is going to work on.
This information is represented by objects called
variable infos that can be added to each operator.
Additionally, the user can access these variable infos to
set the actual variable names. In analogy to classical
procedure calls variable infos can therefore be
interpreted as parameter lists of operators.

108

In order to build complex algorithms, operators are
combined to a sequence of operations. Each operator
contains arbitrary many references to other operators
(sub-operators) representing the static structure of an
algorithm. When an operator is executed it can decide
which operators have to be executed next. In that way
designated control operators can be built that do not
manipulate data but dynamically define the execution
flow. For example, a sequence of operators can be
specified using an operator that just returns all its sub-
operators as the next operators to be executed. Another
example would be a branch operator that is choosing
one of its sub-operators as the next operator depending
on the value of some variable contained in the scope the
operator is applied on (cf. an if- or switch-statement in
classical programming languages). In contrast to scopes,
operators do not form a hierarchical structure (although
contained operators are called sub-operators) but are
combined in a graph. In other words an operator that
has already been used in some upper level can be added
as a sub-operator again leading to cycles in operator
references. In combination with sequences and branches
this concept can be easily used to build loops or any
other form of control structures known from classical
programming languages. For example, a do-while-loop
can be realized as a sequence operator containing a
branch operator as its last sub-operator. This branch
operator can contain a reference back to the sequence
operator as its sub-operator defining the branch
executed if the condition holds.

As a result, it is possible to represent concepts
known from classical (procedural) programming
languages in the operator model (sequences, branches,
loops). It is therefore capable of representing arbitrary
algorithms and of course especially heuristic
optimization algorithms.

3.3. Execution Model
The last aspect to be considered is execution of
algorithms. Represented as operator graphs algorithms
are executed step by step by virtual machines called
engines. In each iteration an engine performs an
operation which is applying an operator on a scope.
Therefore, an operation represents a tuple of an operator
and the scope the operator should be applied on. At the
beginning of each algorithm execution an engine is
initialized with a single operation containing the initial
(root) operator of the algorithm and an empty scope (i.e.
the global scope).

As the program flow is dynamically defined by
operators themselves, each operator may return one or
more operations after its execution that have to be
executed next. As a consequence engines have to keep
track of all operations waiting for execution. These
pending operations are kept in a stack. In each iteration
an engines pops the next operation from the top of its
stack, executes the operator on the scope and pushes the
returned successor operations in reverse order back on
the stack again (reversing the order is necessary to
maintain the execution sequence as a stack is a last-in-

first-out queue). By this means engines perform a
depth-first expansion of operators. A pseudo-code
representation of the main loop of engines is shown
below:

clear global scope
clear operations stack
push initial operation

WHILE NOT operations stack is empty DO BEGIN
 pop next operation
 apply operator on scope
 push successor operations
END WHILE

As a summary of the generic algorithm model

consisting of the three parts described in the previous
sections (data model, operator model, execution model),
figure 1 gives the main identified components and
shows the corresponding interactions.

Figure 1: Generic algorithm model

4. PARALLELISM
In many real world applications of heuristic
optimization performance is of crucial importance.
Therefore, concepts of parallel and distributed
computing have to be used frequently to utilize multiple
cores or even computers (clusters) and to distribute the
work load. In the parallel heuristic optimization
community several models of parallelization have been
developed reflecting different strategies. In general
these models can be categorized in two main
approaches:

On the one hand quality calculation can be
considered for parallelization. For many optimization
problems the computational effort required for
calculating the quality of a single solution is much
higher than the effort needed by solution manipulation
operations. Consider for example heuristic optimization
in the area of production planning or logistics. In that
case evaluating a solution is done by building a
schedule of all jobs or vehicles available whereas

Operator Scope

Variables

Data

Engine

hostsexecutes

processes

contains

contain

containscontains

Variable Infos

contains

correspond to

109

manipulation of solutions is usually reduced to twisting
of permutations (this depends on the solution encoding
but variations of permutation-based encoding are
frequently used for combinatorial optimization
problems and have been successful in many
applications). As another example heuristic
optimization of data representation or simulation
models can be mentioned as in these applications
solution evaluation means executing the whole model
(i.e. performing the simulation or checking the quality
of the model for all training data). In both examples
(and there are many more) executing the evaluation of
solutions in parallel is a helpful approach (usually called
global parallelization) (Alba 2005). However, the
heuristic algorithm performing the optimization by
creating new and hopefully better solutions remains a
sequential one.

On the other hand parallelization can also be
considered for heuristic optimization algorithms directly
(Alba 2005). By splitting solution candidates into
distinct sets, these sets can be optimized independently
from each other and therefore in parallel. For example
parallel multi-start heuristics are simple representatives
of that concept. In that case multiple optimization runs
are executed with different initial solutions to achieve a
broader coverage of the search space. No information is
exchanged between solution sets until the end of the
optimization. In more complex approaches exchange of
information from time to time is additionally used to
keep the search process alive and to support
diversification of the search (coarse- or fine-grained
parallel genetic algorithms, e.g.). In general, population-
based heuristic optimization algorithms are very well
suited for this kind of parallelization as multiple
populations can be used as distinct sets and no
additional splitting of solutions is necessary.

By separating the definition of parallelism in
algorithms from the concrete way how a parallel
algorithm is executed, users of heuristic optimization
software systems can focus on algorithm development
without having to rack their brains on how
parallelization is actually done. If the basic algorithm
model already supports parallelism, all different kinds
of parallel algorithms can be modeled enabling also the
implementation of these different parallelization
strategies used in heuristic optimization discussed
above.

The generic algorithm model discussed in this
paper follows a strict separation of data, operations and
algorithm execution. As a consequence introducing
parallelism can be done quite easily by grouping
operations into sets that are allowed to be executed in
parallel. As an operator may return several operations to
be executed next, it can mark this group of successor
operations as a parallel group. This signals the engine
that some operations are independent from each other
and the engine is now free to decide which kind of
parallel processing should be used for their execution.
How parallelization is actually done depends on the
engine only. For example, one engine can be developed

that doesn't care about parallelism at all and executes an
algorithm still in a sequential way (which is especially
helpful for testing algorithms before they are really
executed in parallel). Another engine might use multiple
threads to execute operations of a parallel group
(exploiting multi-core CPUs) or an even more
sophisticated engine might distribute parallel operations
to several nodes in a network following either a client-
server-based or a peer-to-peer based approach (utilizing
cluster or grid systems). Also meta-engines are possible
that use other engines for execution which enables
hybrid parallelization on different levels (for example
distributing operations to different cluster nodes on a
higher level and using shared-memory parallelization on
each node on a lower level). As a consequence the
parallelization concept used for executing parallel
algorithms can simply be specified by the user by
choosing an appropriate engine the algorithm is
executed on. The algorithm itself doesn't have to be
modified at all.

Based on this parallelization concept the generic
algorithm model allows development of special control
operators for parallel algorithms. For example, parallel
execution of operators can be realized by an operator
very similar to the sequence operator already discussed
in the previous section. The only difference is that in the
parallel case the operator has to mark its successor
operations containing all its sub-operators and the actual
scope as a parallel group. Furthermore, the hierarchical
structure of scopes enables data partitioning in a very
intuitive way. As an example consider a sub-scopes
processor which returns a parallel group of operations,
containing an operation for each of its sub-operators
being executed on one of the sub-scopes of the current
scope. By this means parallelization can be applied on
any level of scopes leading to global, fine- or coarse-
grained parallel heuristic algorithms.

5. LAYERS OF USER INTERACTION
As the generic algorithm model described in the
previous sections is not dedicated to heuristic
optimization but can represent arbitrary algorithms, it
offers a very high degree of flexibility. Operators
representing a broad spectrum of actions ranging from
trivial increments or variable assignments to complex
selection or manipulation techniques can be used as
building blocks for algorithm development leading to a
high degree of code reuse. Furthermore, also custom
operators can be integrated easily, if the set of
predefined operators provided by a framework is not
sufficient.

However, such a low level of abstraction is not
reasonable for many users as even the representation of
simple algorithms results in quite large and complex
operator graphs. Therefore, several layers of user
interaction are required that represent different degrees
of abstraction.

Such layers can be realized on top of the generic
algorithm model by using combined operators that
encapsulate operator graphs (i.e. algorithms) and

110

represent more complex operations. In that case the
generic algorithm model serves as a meta-model for
heuristic optimization algorithms. An important aspect
is that combined operators are not hard-coded in a
framework but can be developed and shared on the user
instead of the development level.

For example, users can provide combined
operators representing ready-to-use heuristic
optimization algorithms (like a canonical genetic
algorithm, simulated annealing, hill climbing, tabu
search, or particle swarm optimization) that can be used
as black box solvers. By this means other users can start
working with specific algorithms right away without
having to worry about how an algorithm is structured in
detail.

In between predefined solvers and the generic
algorithm model, arbitrary other layers can be realized
representing various (user-specific) heuristic
optimization models. For example, generic models of
specific heuristic optimization algorithm flavors
(evolutionary algorithms, local search algorithms, etc.)
can be represented by a set of operators useful to enable
experimenting with these paradigms without putting the
burden of the whole complexity and genericity of the
basic algorithm model on users.

In figure 2 this layered structure of user interaction
is shown schematically. As all these layers use the same
algorithm model as their basis, users are free to decide
which level of abstraction is adequate for their needs.

Figure 2: Layers of iser interaction

6. CONCLUSION
In this paper the authors presented a generic model for
heuristic optimization algorithms. Compared to other
models known from existing heuristic optimization
software frameworks, the main advantage of the
proposed solution is a higher level of abstraction. By
considering the three main aspects of algorithms in
general (data, operators and execution), a generic model
was developed that is not only capable of representing
heuristic optimization techniques but can be used for
modeling arbitrary algorithms.

By this means the model can act as a meta-model
which enables users to incorporate custom heuristic
optimization paradigms and algorithms in a flexible
way. As the burden of a single and fixed representation
trying to cover all different kinds of heuristic
optimization concepts is removed, users are free to
realize custom models built on top of the generic
algorithm model that exactly fit their needs.

Furthermore, aspects like parallelism or user
interaction on different layers of abstraction have been
considered, showing that the described model is suitable
for developing a new generation of heuristic
optimization software systems.

REFERENCES
Alba, E., 2005. Parallel Metaheuristics: A New Class of

Algorithms. Wiley.
Doerner, K. F., Gendreau, M., Greistorfer, P., Gutjahr,

W., Hartl, R. F., Reimann, M., 2007.
Metaheuristics: Progress in Complex Systems
Optimization. Springer.

Fink, A., Voß, S., 2002. HotFrame: A Heuristic
Optimization Framework. In: Optimization
Software Class Libraries. Kluwer.

Gagne, C., Parizeau, M., 2006. Genericity in
Evolutionary Computation Software Tools:
Principles and Case-Study. International Journal
on Artificial Intelligence Tools, 15, 173-194.

Johnson, R., Foote, B., 1988. Designing Reusable
Classes. Journal of Object-Oriented
Programming, 1 (2), 22-35.

Jones, M. S., McKeown, G. P., Rayward-Smith, V. J.,
2002. Distribution, Cooperation, and
Hybridization for Combinatorial Optimization. In:
Optimization Software Class Libraries. Kluwer.

Voß, S., Woodruff, D. L., 2002. Optimization Software
Class Libraries. In: Optimization Software Class
Libraries. Kluwer.

Algorithm Model

Specific Models
(Algorithm Building Blocks)

Solvers
(SGA, TS, SA, PSO, …)

Sp
ec

ia
liz

at
io

n

G
en

er
al

iz
at

io
n

111

