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ABSTRACT 
In recent years, software systems for the simulation of 
medical ultrasound imaging have been developed, thus 
making it possible to partially prototype transducers in 
software. In this paper a set of ultrasound transducer 
parameters is optimized using a genetic algorithm (GA). 
The settings are evaluated by simulating a B-mode scan 
for each transducer configuration. The quality of the 
generated B-Mode images is assessed by an image 
quality metric.  
 
Keywords: ultrasound simulation, genetic algorithms, 
parameter optimization 

 
1. INTRODUCTION 
Ultrasound (US) imaging has become an attractive 
technology for medical diagnosis due to its non-
invasive nature, real-time capability and cost 
effectiveness. Unlike other diagnostic modalities, 
ultrasound systems do not emit ionizing radiation and 
scans may be conducted as often as necessary without 
the risks of repeated exposure to X-rays or 
radionuclides. 

Unfortunately speckle artifacts and low spatial 
resolution limit the use of ultrasound imaging in clinical 
practice. A variety of methods have been proposed to 
improve US image quality and assist physicians in the 
interpretation of their scans. One possible approach is 
the utilization of image and signal processing 
algorithms to remove artifacts and enhance the contrast 
(cf. Section 2.2). This is mostly a post-processing step, 
though, taking over after the image has already been 
captured.  

In this study the focus will be on the medical 
ultrasound scanner instead, and more specifically on the 
optimization of the transducer probe. The probe is the 
part of the ultrasound system that emits the sound 
waves and receives its echoes. It is therefore most 
crucial for obtaining high-quality US images.  

The authors propose a software-based and fully 
automatic optimization of transducer arrays in order to 
improve ultrasound image quality. An ultrasound 
simulator and a genetic algorithm are employed to 
achieve this goal (cf. Section 4).  

 
2. DIAGNOSTIC ULTRASOUND IMAGING 
In medical ultrasound a sound wave is produced by an 
array of piezoelectric transducers. To ensure good 
coupling between patient and ultrasound probe a water-
based gel is usually applied to the patient’s skin before 
scanning. The transceiver probe emits a pulse of 
ultrasound and then switches to reception mode to 
register the reflected echoes. The reflected or 
backscattered echoes are detected and used to form a 
digital image of the scanned region. 
 
2.1. Imaging modes 
One of the oldest – and most basic – ultrasound modes 
is the so-called A-mode scan (abbreviation for 
amplitude scan). A single ultrasound pulse is emitted 
from the probe. When the pulse crosses the boundary 
between two tissues of different density, part of the 
wave is reflected back towards the probe. This echo is 
detected by the transceiver and displayed as a spike in a 
line plot.  

Brightness mode (also known as B-mode) images 
are produced by arranging many A-scans parallel to 
each other and displaying the amplitudes as grey-scale 
values. The raw radio-frequency (RF) data 
compromises both amplitude and phase information 
from the detected waves, the latter of which is discarded 
during envelope detection. To display the amplitudes 
the resulting image has to be compressed, as most 
computer screens only have a dynamic range of 20-30 
dB (Dutt 1995). 

Other important imaging modes include M-mode 
and Doppler sonography. For further information on 
ultrasound technology and instrumentation see for 
example (Zagzebski 1996). 

 
2.2. Speckle, Noise and Low Resolution 
Both the spatial and contrast resolution of ultrasound B-
mode scans are limited by speckle artefacts that give the 
images their characteristic granular structure 
(Burckhardt 1978). Speckle is caused by tiny particles 
below the resolution of the ultrasound modality, also 
called scatterers, which produce a random interference 
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pattern that has no direct link to the biological structure 
of the scanned tissue.  

Since the speckle pattern obscures biological 
features, blurs tissue boundaries and restricts the 
contrast resolution of US images, different techniques 
have been applied to suppress this undesirable effect, 
among them spatial compounding (Trahey, Smith and 
von Ramm 1968) and filtering (Loupas, McDicken and 
Allen 1989, Jin, Silva and Frery 2004). 

Insonifying a patch of tissue from different angles, 
using different ultrasound transducers or pulse length 
will produce quite different speckle patterns. However, 
if an object is scanned twice under exactly the same 
conditions, an identical pattern is obtained (Burckhardt 
1978). That is why speckle patterns, although they 
appear to be random, are not noise in the same sense as 
for example electrical noise. It would therefore be 
interesting (in a subsequent stage) to analyze the 
produced speckle patterns for a number of transducer 
arrays and identify possible parameter dependencies.  

Apart from presenting potential future work, the 
speckle patterns also strongly influence the choice of 
the evaluation function in Section 4.4.  

 
3. PREVIOUS WORK 
Researchers have used heuristic optimization 
algorithms, like genetic or evolutionary algorithms, to 
optimize or estimate ultrasound transducer settings in 
the past, albeit mostly with a strong focus on 
electromechanical design parameters.  

Fu, Hemsel and Wallaschek (2006) employed 
evolutionary algorithms to optimize the setup of 
Langevin ultrasound transducers, also called sandwich 
transducers. The name is due to their characteristic 
setup, which consists of (multiple) piezoelectric ceramic 
disks sandwiched between metallic end blocks. 
Relevant design parameters include the materials used 
in the different layers, layer thickness or the number of 
piezoelectric elements. These transducers are developed 
for industrial machining, especially high vibration 
welding and cleaning. The optimization objectives 
(maximize the vibration amplitude; minimize the 
electric input power) differ significantly from the 
objectives for a medical ultrasound transducer 
(maximize the diagnostic value of generated B-scan 
images; maximize comfort and safety of the patient), as 
pursued in this work. 

Ruíz, Ramos and San Emeterio (2004) addressed 
the reverse problem in their work, namely how to 
estimate the internal design parameters (thickness, 
acoustic impedance etc.) for an existing ultrasound 
transducer. This is especially useful for modeling and 
simulation of ultrasound systems, since the construction 
details of commercial ultrasound probes are rarely 
known. In this case the transducer is regarded as 
blackbox and the internal parameters are estimated from 
the output signal via a genetic algorithm.  

 

4. A SYSTEM FOR THE OPTIMIZATION OF 
ULTRASOUND TRANSDUCER SETTINGS 

 
The proposed system consists of the following modules, 
which will be explained in detail after the general 
overview of the algorithm: 
 

• HeuristicLab: Optimization Framework 
• Field II: Ultrasound Simulator  
• Image Quality Index (IQ): Similarity measure 

between two images 
 

 
Figure 1: Fully automated optimization cycle 

 
The heuristic optimization environment 

HeuristicLab provides all the necessary components to 
build a customized genetic algorithm (Holland, 1992) 
for the optimization of transducer parameters.  

A single transducer is represented by a vector of 
real values containing parameters such as the center 
frequency or the number of sensor elements (for a 
detailed list of the selected parameters see Section 4.2). 

As depicted in Figure 1 the optimization cycle 
works in the following way:  

 
1. Initially HeuristicLab generates a number of 

vectors (= transducers) which are randomly 
initialized. In order to generate (preferably 
better) offspring from this initial population, 
the quality, also called fitness, of the available 
transducers has to be assessed first. 

2. The parameter vectors are therefore passed on 
to the ultrasound simulator Field II which 
simulates a B-mode scan with each transducer 
and produces an image.  

3. This scan is then evaluated by the Image 
Quality Index module which assigns a fitness 
value between 0 and 1 to the image (and thus 
indirectly determines the quality of the 
transducer). 

101



4. Our GA commences with the usual 
optimization steps (parent selection, generate 
new individuals with crossover/mutation, 
evaluation of new transducers, replacement 
mechanism etc.).  

5. The algorithm terminates after a pre-defined 
number of iterations or in case of manual 
abortion of the optimization.  

 
4.1. HeuristicLab 
HeuristicLab (Wagner et al. 2007) is a paradigm-
independent and highly customizable optimization 
framework. HeuristicLab provides a number of standard 
workbenches for frequently used algorithms, but its 
plug-in based architecture allows users to integrate their 
own problem representations or domain-specific 
operators into the system with ease.  
 
4.2. Simulation with Field II 
The ultrasound simulation program Field II (Jensen and 
Svendsen 1992, Jensen 1996) by Jørgen Ardendt Jensen 
from the Technical University of Denmark was used as 
simulator in this study. Field II relies on linear system 
theory to model the ultrasound field emitted from the 
transducer. In ultrasound imaging the impulse response 
varies in relation to the position relative to the 
transducer, hence the name spatial impulse response. 
Field II can approximate the spatial impulse response 
for arbitrary transducer settings and geometries.  
 
4.3. Parameters for optimization 
Field II simulates ultrasound transducers of arbitrary 
shape and facilitates an assortment of custom parameter 
settings, including dynamic focusing and apodization (= 
reduced vibration of the transducer surface with 
distance from its center), different excitation pulses, 
concave and even sparsely populated transducer arrays 
(Jensen 1996).  

For this study the parameters subject to the 
optimization were limited to a selected few, namely: 

 
• f0: Transducer center frequency  

Range: 2.5 – 15MHz 
A higher frequency generates a focused 
ultrasound beam that yields better image 
resolution at the cost of reduced imaging 
depth. 

• fs: Sampling frequency  
Range: 0–200 MHz 

• element_height: Height of one element  
Range: 0-10 mm 

• element_width: Width of one element 
Range: 0.1-1 mm 

• kerf: Spacing between elements in lateral 
direction  
Range: 0.1-5 mm 

• focus: Fixed focal point (lateral, elevational, 
axial) 
At the focal point the sound field 
constructively converges. The focal point is 

given relative to the center of the transducer 
surface which is defined as (0,0,0). The axial 
location, also called the focal depth, is of 
particular interest.  
Range (for axial location): 0-100 mm 

• n_elements: Number of physical elements in 
lateral direction (= one-dimensional array) 
Possible Values: 2, 4, 8, 16, 32, 64, 128, 256, 
512 and 1024 

 
Figure 2 shows the physical dimensions of a transducer 
and its main parameters (except for the transducer 
frequency). Each setting of the parameter vector (f0, fs, 
element_height, element_width, kerf, focus, n_elements) 
describes an individual ultrasound transducer and serves 
as representation of a solution candidate for the genetic 
algorithm The quality of each GA-generated solution 
candidate is assessed by simulation of the transducer 
with Field II and subsequent evaluation of the generated 
ultrasound B-mode image (cf. Section 4.5).  

 

 
Figure 2: Transducer parameters and nomenclature for 
the ultrasound imaging directions (axial, lateral, 
elevational). 
 
4.4. Simulating a B-mode scan 

To assess the quality of ultrasound transducers a 
variety of clinical requirements has been identified by 
Angelsen et al. (1995), among them spatial resolution, 
imaging artefacts and sensitivity. In addition, 
anatomical constraints, as encountered in the fields of 
cardiac or pelvic ultrasound, and patient comfort may 
pose restrictions on both the size and shape of the 
transducer probe. For example, to scan the chambers 
and valves of the heart the ultrasound beam has to be 
aimed through a narrow opening between the ribs, since 
both bone and lung tissue obstruct the passage of 
ultrasound waves. Transthoracic transducer probes are 
therefore usually narrow and long. Similar restrictions 
apply for gynecological exams, breast ultrasound 
screenings or transrectal exams. 

Such application specific considerations aside, a 
medical ultrasound system is mostly judged by the 
quality – in terms of diagnostic value – of the 
ultrasound images it produces. Therefore the authors 
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decided not use physical target parameters (like the 
vibration amplitude) to evaluate transducers but to 
perform an examination on a “virtual patient” and rate 
the transducers by the image quality they produce. 

A synthetic phantom of a fetus in the third month 
of development (Jensen and Munk 1997) was used for 
the evaluation of the transducer setting (cf. Figure 3). 
For each generated transducer array a scan of the 
phantom was simulated with Field II. One image scan 
consists of 128 raw radio-frequency (RF) lines that can 
be calculated in parallel to speed up the simulation. The 
generated RF-data was then post-processed for display 
on a computer screen by discarding the phase 
information and performing logarithmic compression, 
thus yielding a simulated B-mode scan of the phantom.  

 

 
Figure 3: Synthetic phantom of a fetus in the third 
month of development (Jensen and Munk 1997): The 
varying grayscale values depict the scattering strength 
and density of the modeled tissues. The phantom is 
generated with 200.000 randomly distributed scatterers.  
 

The evaluation of B-mode images is usually 
performed by human experts. While this is certainly the 
most accurate and important method of assessing image 
quality for medical diagnosis, the generated images 
were rated by employing the image quality index (IQ) 
proposed by Wang and Bovik (2002) to create a fully 
automatic optimization cycle as depicted in Figure 1.  

 
4.5. Image quality index 
The grainy appearance of ultrasound B-mode images is 
not only a diagnostic issue but also makes image 
processing very difficult. As reported by (Pluim, Maintz 
and Viergever 2003) it is often necessary to smooth the 
ultrasound images (e.g. by low-pass filtering) before 
common medical image processing algorithms for 
feature detection or registration can be applied.  

The image quality index was selected for fitness 
evaluation because it works well under different kinds 
of image distortions, including multiplicative speckle 
noise (Wang and Bovik 2002).  The method takes the 
phantom image and the generated image and calculates 
a similarity measure scaled between 0 and 1.  

 
5. RESULTS AND DISCUSSION 

A standard GA with a population size of 10 
individuals was used to test the optimization concept. 
The initial population was generated with a random 
parameter setting. Due to the long simulation times, 
especially for transducers with large n_elements, the 

algorithm completed three iterations and produced a 
total of 43 transducer settings that were evaluated so far. 
Two aspects have affected the optimization test run 
severely, namely 

 
• simulation time requirements and  
• issues with the image quality index IQ 

 
which shall be elaborated in more detail in the 
following sections.  
 
5.1. Simulation time requirements 
Simulating a single RF line took 25 minutes on average 
on a Pentium 4 CPU, 3GHz with 1GB RAM. Since one 
generated B-mode image consists of 128 such lines, 
simulations were conducted in parallel on 10 Pentium 4 
computers to reduce the total processing time. 

Despite the parallelization of the ultrasound 
simulation, evaluating a single population of transducer 
parameter settings can take a couple of days, thus the 
number of individuals per generation was limited to 10. 
The processing time per RF line ranged between 20 
seconds and 14 hours, depending on the individual 
parameter settings. Experiments with 1024 n_elements 
were tried as well but proved to have a very unfavorable 
simulation time (approximately 1 week per B-mode 
image, with parallel simulation on 10 workstations).  

The authors expect that transducer setting with 
larger n_elements will dominate the optimization as the 
number of iterations increases, thereby requiring more 
and more processing time for the evaluation. The 
currently available parallel infrastructure with 10 
desktop computers, which can be utilized for nightly 
evaluation runs, is not sufficiently dimensioned to 
complete such a task within an acceptable time span. An 
anticipated expansion of our simulation cluster will 
improve the scaling of the algorithm for transducers 
with large n_elements, thus alleviating the issue of 
increasing simulation times.  

Alternatively, since the RF lines can be simulated 
independently of each other, one could define a region 
of interest (ROI) of perhaps 20 lines which are 
simulated first in case of a large n_elements value. 
Subsequently the fitness of the ROI is calculated and 
used to assess whether the simulation of the whole 
image would pay off or if that particular parameter set 
should be discarded immediately.  
 
5.2. Fitness evaluation 
To get a better appraisal for the fitness values of the 
generated transducers a reference fitness value from a 
transducer that was known to be feasible was needed.  
The authors used Jensen and Munk’s (1997) original 
parameter settings from the paper to generate the B-
mode image that is displayed in Table 1 as #1. The 
fitness value of 0.552 shows the impact the presence of 
speckle has on image-similarity, even for parameter 
settings that are surely very good.  

As described in Section 4.5 the image quality 
index IQ does indeed work well despite the presence of 
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speckle patterns in the generated images. What the 
authors had not anticipated were the spatial 
deformations of the target B-scan (see Table 1, #2) that 
were produced by some of the settings. Since the image 
quality index was not designed to do registration of 
medical US images as well, this led to IQ rankings that 
did not sustain a visual inspection, as in the case of scan 
#2 and #3 in Table 1. A further refinement of the fitness 
evaluation is therefore defenitely adviseable.  

 
Table 1: Parameter settings for selected transducers, 
their respective simulated B-scans and fitness values. 
The elements of the parameter vector and their units are 
(f0[MHz], fs[MHz], element_height[mm], 
element_width[mm], kerf[mm], focus[mm], n_elements) 

#1

 

Reference Configuration 
(Jensen and Munk 1997): 
 
Settings: 
(5, 100,7, 0.308, 2.5, 
70, 64) 

F = 0.552 

#2

 

Good solution from GA  
 
Settings: 
(7.379, 129.005, 4.81, 
1.263, 0.199, 81.31, 
64) 

F = 0.432 

#3

 

Bad solution from GA  
 
Settings:  
(4.327, 155.42, 0.933, 
6.187, 0.5327, 40.679, 
16) 

F = 0.49 
#4

 

Worst simulated solution  
 

Settings: 
(12.77, 12.16, 0.558, 
4.529, 0.667, 90.993, 
256) 

F = 0.0827 
 
6. CONCLUSION AND FUTURE PERSPECTIVES 
The authors showed that it is possible to optimize 
medical ultrasound transducer arrays autonomously 
using a genetic algorithm, an ultrasound simulation 
program and an image quality metric. The main issues 
of the approach in its current form are the duration of 
the simulation runs and an image quality metric that is 
still far from optimal.  

Nevertheless, the authors are convinced that the 
optimization of ultrasound transducers via simulation 
and genetic algorithms might be an attractive option for 
ultrasound manufacturers to reduce their hardware 
prototyping efforts. Since the algorithm works 
autonomously, it could schedule the RF-line 
calculations to run on unoccupied desktop computers 
during the night and/or on weekends, and calculate a 

pre-selection of promising transducer geometries for 
subsequent hardware prototyping and clinical tests.  

By extending the parameter set, e.g. by allowing 
sparsely populated arrays, even new transducer 
geometries might be found – always assuming that the 
simulation yields valid results for unusual settings. The 
authors plan to consult ultrasound experts in the next 
development step to discuss the simulation results and 
to further refine both the image quality index and the 
parameter set for optimization.  
 

REFERENCES 
Angelsen, B.A.J., Torp, H.,  Holm, S., Kristoffersen, K. 

and Whittingham, T.A., 1995. Which transducer 
array is best? European Journal of Ultrasound, 
Volume 2, Number 2, pp. 151-164. 

Burckhardt, C.B., 1978. Speckle in ultrasound b-mode 
scans. IEEE Transactions on Sonics and 
Ultrasonics, Volume 25, Issue 1, pp. 1-6. 

Dutt, V., 1995. Statistical Analysis of Ultrasound Echo 
Envelope. PhD thesis, The Mayo Graduate School  

Fu, B., Hemsel, T. and Wallaschek, J., 2006. 
Piezoelectric transducer design via multiobjective 
optimization. Ultrasonics, Volume 44, Supplement 
1, pp. e747-e752. 

Holland, J.H., 1992. Adaptation in Natural and 
Artificial Systems: 2nd edition. MIT Press. 

Jensen, J.A., 1996. Field: A Program for Simulating 
Ultrasound Systems, Paper presented at the 10th 
Nordic-Baltic Conference on Biomedical Imaging 
Published in Medical & Biological Engineering & 
Computing, Volume 34, Supplement 1, Part 1, pp. 
351-353. 

Jensen, J.A. and Svendsen, N. B., 1992. Calculation of 
pressure fields from arbitrarily shaped, apodized, 
and excited ultrasound transducers, IEEE 
Transactions on Ultrasonics, Ferroelectrics and 
Frequency Control, Volume 39, pp. 262-267.  

Jensen, J.A. and Munk, P., 1997. Computer phantoms 
for simulating ultrasound B-mode and cfm images, 
23rd Acoustical Imaging Symposium, April 13-16, 
Boston, Massachusetts, USA. 

Jin, J.Y, Silva, G.T. and Frery, A.C., 2004. SAR 
despeckling filters in ultrasound imaging. Latin 
American Applied Research, Volume 34, Issue 1, 
pp. 49-53. 

Loupas, T., McDicken, W.N. and Allen, P.L., 1989. 
Adaptive weighted median filter for speckle 
suppression in medical ultrasonic images. IEEE 
Transactions on Circuits and Systems, Volume 36, 
pp. 255-269. 

Pluim, J.P.W., Maintz, J.B.A. and Viergever, M.A., 
2003. Mutal-information-based registration of 
medical images: a survey. IEEE Transactions on 
Medical Imaging, Volume 22, pp. 986-1004. 

Ruíz, A., Ramos, A. and San Emeterio, J.L., 2004. 
Estimation of some transducer parameters in a 
broadband piezoelectric transmitter by using an 
artificial intelligence technique, Ultrasonics, 
Volume 42, pp. 459-463. 

104



Trahey, G.E., Smith, S.W. and von Ramm, O.T., 1968. 
Speckle pattern correlation with lateral aperture 
translation: experimental results and implications 
for spatial compounding. IEEE Transactions on 
Ultrasonics, Ferroelectrics and Frequency 
Control, Volume 33, Issue 3, pp. 257-264. 

Wagner, S., Winkler, S., Braune, R., Kronberger, G., 
Beham, A. and Affenzeller, M., 2007. Benefits of 
Plugin-Based Heuristic Optimization Software 
Systems, Computer Aided Systems Theory - 
EUROCAST 2007, Lecture Notes in Computer 
Science 4739, pp. 747-754. Springer-Verlag. 

Wang, Z. and Bovik, A.C., 2002. A universal quality 
index, IEEE Signal Processing Letters, Volume 9, 
Number 3, pp. 81-84. 

Zagzebski, J.A., 1996. Essentials of ultrasound physics. 
Mosby 

 
 

AUTHORS BIOGRAPHY 
 
MONIKA KOFLER studied Medical 
Software Engineering at the Upper Austrian 
University of Applied Sciences, Campus 
Hagenberg, Austria, from which she 
received her diploma’s degree in 2006. She 

is currently employed as a research associate at the 
Research Center Hagenberg and pursues her PhD in 
engineering sciences at the Johannes Kepler University 
Linz, Austria.  

 
ANDREAS BEHAM received his MSc in 
computer science in 2007 from the 
Johannes Kepler University (JKU) Linz, 
Austria. His research interests include 
heuristic optimization methods, simulation 
and combinatorial optimization. Currently 

he is a PhD student at the JKU and a research associate 
at the Research Center Hagenberg of the Upper Austria 
University of Applied Sciences (Campus Hagenberg). 
 

MICHAEL AFFENZELLER has 
published several papers and journal 
articles dealing with theoretical aspects of 
genetic algorithms and evolutionary 
computation in general. In 1997 he 
received his MSc in Industrial Mathematics 

and in 2001 his PhD in Computer Science, both from 
the Johannes Kepler University Linz, Austria. He is 
professor at the Upper Austria University of Applied 
Sciences (Campus Hagenberg) and associate professor 
at the Institute of Formal Models and Verification at 
Johannes Kepler University Linz, Austria since his 
habilitation in 2004. 

 
STEFAN WAGNER received his MSc in 
computer science in 2004 from Johannes 
Kepler University Linz, Austria. He now 
holds the position of an associate professor 
at the Upper Austria University of Applied 

Sciences (Campus Hagenberg). His research interests 
include evolutionary computation and heuristic 
optimization, theory and application of genetic 
algorithms, machine learning and software 
development. 
 
The web pages of all members of the Heuristic and 
Evolutionary Algorithms Laboratory as well as further 
information about HeuristicLab and related scientific 
work of the can be found at: 
 http://www.heuristiclab.com. 

105


