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ABSTRACT 
Human-to-human tutoring is the most effective manner 
for learning.  Human tutors, however, pay attention to the 
cognitive and affective states of the learners and use the 
knowledge to adjust instructional strategies.  According 
to theory, data about the learner informs data about 
instruction informs instructional designs and impacts 
student learning.  The crux of these type of operations is 
the ability to recognize affect in the learner, but deployed 
systems to do this have not had significant success with 
the “one size fits all” type of generalized models.  An 
alternative to this approach is individualized models, 
which have shown limited success to date in other 
domains.  This paper furthers the investigation of 
individualized models and validates the approach, 
showing that it can produce models of acceptable quality, 
but that doing so does not obviate the experimenter from 
creating quality generalized models prior to 
individualizing. 
 
Keywords: Adaptive and Predictive Computer-based 
Training, Intelligent Tutoring Systems, Architectural 
Components, Emerging Standards 

 
1. INTRODUCTION 
Tutoring by an expert human tutor is extraordinarily 
effective. There is debate among the literature about how 
effective human tutors are, but it is commonly found to 
be between one and two standard deviations of 
improvement; between one and two letter grades  
(Bloom, 1984; VanLehn, 2011), with the highest 
reported gains in the range of four standard deviations 
(Fletcher & Morrison, 2012).  Theory indicates that 
learner data inform learner states which inform 
instructional strategy selection which influences learning 
gains (Sottilare, Brawner, Goldberg, & Holden, 2012), 
shown in Fig. 1.  As ITS research moves towards highly 
adaptable and individualized tutoring, the need to 
automatically assess the cognitive and affective states of 
the individual learner for instructional adjustment has 
been well documented (Department of the Army, 2011; 
Woolf, 2010), and extensive work has been performed to 
recognize the emotional state of a learner by 
incorporating sensors to monitor both behavioral and 
physiological markers and is discussed in the coming 
sections (AlZoubi, Calvo, & Stevens, 2009; Calvo & 

D'Mello, 2010; D’Mello et al., 2005; D’Mello, Taylor, & 
Graesser, 2007; McQuiggan, Lee, & Lester, 2007). 

 
Fig. 1: Learning Effect Chain (Sottilare, 2012) 

 

The traditional manner of incorporating these models is 
to take measurements of a group of classroom 
measurement, move the data offline, perform significant 
amounts of feature extraction, create models, and apply 
the models to the next set of classroom learners.  
However, these systems have not been shown to 
transition well into a field of use due to a variety of 
reasons including differences in classroom structure, 
sensor placement, time of day, season of the year,, 
individual differences, and other reasons (Brawner, 
2013).  An alternative to this practice are  individualized 
modeling techniques (AlZoubi et al., 2009) using 
realtime analysis (Brawner, 2013). 

However, realtime data presents unique problems for 
algorithmic modeling purposes. There are four main 
problems with realtime data, they are 1) the data can be 
of potentially infinite length, 2) concept detection, 3) 
concept drift, and 4) concept evolution.  The combination 
of these issues present a problem for whichever type of 
algorithm is used to solve it.  The realtime construction 
and use approach necessitates a stream model of the data, 
with the following assumptions, and corresponding 
design limitations, as (Beringer & Hüllermeier, 2006) 
outlines: 

• Operations must be done on the data as they become 
available 

o Data ordering is outside of control 

o Data cannot be requested 

o Knowledge about prior points must be encoded, if 
they are to be related to each other 

• The dataset is of infinite length; it is not possible to 
store or analyze all of the data 

o Data elements are not available for repeated request 

• Data must either be saved or discarded 
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o Practical processing and memory limits necessitate 
the discard of most data 

• There are strict time constraints 

o Data must be processed in real time 

• An approximate solution is an acceptable substitute for 
an ideal one (Considine, Li, Kollios, & Byers, 2004) 

These problems are the starting point for an avenue of 
research into realtime modeling of student state at 
runtime, rather than a priori.  However, there are lessons 
learned from these modeling techniques – the foremost 
of which is that the models must have feature extraction 
along the order of the offline models.  This paper presents 
several algorithmic approaches towards dealing with the 
problem of affective computing at runtime.  It discusses 
lessons learned across 4 algorithmic approaches, 3 
labeling approaches, and 5 datasets.  The algorithm and 
labeling approaches are discussed next, followed by a 
discussion of the various datasets, before performance 
and lessons learned are addressed.  
 
2. ALGORITHMIC APPROACHES TO DEAL 

WITH REALTIME DATASTREAMS 

2.1. Introduction 
The goal of this research is to further investigate the 
approach of creating realtime models.  It has previously 
shown promise for small sample sizes (Brawner, 2013; 
Brawner & Gonzalez, 2016), and the current work is an 
attempt to expand and validate the approach on a larger 
and more complete sample.  In order to determine if the 
approach is valid, a number of disparate but 
representative machine learning methods were chosen, 
including an incremental clustering approach, a neural 
network approach, a linear regression approach, and a 
graphical model approach. 

Further, it is useful to consider that, since the models are 
being made for individual learners as they begin, 
information from the learner is available during model 
construction time.  Considering this, it is possible to ask 
the learner to selectively tag individual states when they 
are experienced.  Each algorithm should take an 
approach that uses this information to tag the most 
pervasive (but currently unknown) category.  In addition 
to an outline of each algorithm, modifications to adjust 
the algorithm for active learning are taken into account.  

2.2. Clustering Approach 
The clustering approach that was taken was an 
incremental algorithm described in pseudo-code in Fig. 
2.  The modifications made for semi-supervised and 
active learning are shown in Fig. 3. 
 

 
 

 
2.3. Linear Regression Approach 
A regression approach was additionally taken based on 
the superior performance of the logistic regression from 
the initial models.  The Vowpal Wabbit (VW) software 
package is typically extraordinarily effective for the 
creation of regression models, and is capable of both one-
pass (online) learning and supports the use of active 
learning by default (Langford, Karampatziakis, Hsu, & 
Hoffman, 2010).  The authors would encourage the 
readers to see the original publications for a description 
of the active learning approach used, as their complexity 
is beyond the scope of this work (Beygelzimer, Hsu, 
Langford, & Zhang, 2010).  A basic description of the 
algorithm used is described within Fig. 4. 

 
2.4. Neural Network Approach 
Adaptive Resonance Theory (ART) is a type of neural 
network architecture which classifies objects based on 
the activation of nodes in a structure that is build as new 
data is presented to it.  It was developed to classify data 
in a one-pass learning environment (Carpenter and 
Grossberg 1995), and has historic performance roughly 
equivalent to neural networks, but with significantly 
reduced training time.  In its most basic form, ART draws 
n-dimensional hypercubes around similar input patterns, 
where n is the dimension of the input data.  Although 
sometimes viewed as a disadvantage, ART systems are 
capable of one-pass learning, which makes them 
appropriate for realtime classification problems.   The 
basic algorithm is described within Fig. 5.  Similar 
alterations to Fig. 3 were added for compatibility with the 
active learning process. 

 

Fig. 2:Pseudo-code description of clustering algorithm 

For each new point, incrementally 
Compare each point to all known centroids 
If no cluster is within range of <vigilance> 
this point is a new centroid 
Else, move the matched cluster <delta> in new point direction 
Merge closest centroids based on <vigilance>, if appropriate 
Keep track of the number of points in these centroids, and the last 
point which modified the centroid, label if possible 
 

Fig. 3:Pseudo-code of active learning changes for clustering 

When a label is requested 
Find the largest size centroid which does not currently have a 
label, Return the last seen datapoint which modified this centroid 
 

Fig. 4:Pseudo-code of linear regression algorithm; VW 
Start with for all i: wi= 0 Within the loop: 
Get an example:  x ∈ (∞, ∞) 
Make a prediction:  y = Σi  wixi 
Learn the Truth:  y ∈ [0,1] with importance I 
Update the weight: wi = wi + 2η(y-yi)I 
Repeat for specified number of passes or other criteria 

Fig. 5:Pseudo-code of ART algorithm 
For each new data point 
Compute each neurons’ weighted activation to it ( yi = Σwij*xi ) 
Select the neuron with the highest activation 
Test if this neuron in vigilance (xi fuzzyAnd wx < vigilance) 
If it is, update the weights: 
wi = learningRate*xi + (1-learningRate)*wi 
Otherwise, create a new category with xi weights 
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2.5. Online Semi-Supervised Growing Neural Gas 
(OSSGNG) 

Neural Gas is a robustly converging alternative to the k-
means approach of clustering that finds optimal 
representations based on feature vectors.  These feature 
vectors construct a topographical map overlaying the 
data.  An example of such an overlay map is included in 
Error! Reference source not found.. This approach has 
its roots in Self Organizing Maps (SOMs) (Kohonen, 
1982) and Neural Gas topologies (Martinetz & Schulten, 
1991).  Growing Neural Gas (GNG) is an incremental 
version of Neural Gas which is appropriate for 
datastream analysis (Holmstrom, 2002), and was initially 
proposed by Fritzke (Fritzke, 1995).  Semi-Supervised 
GNGs are a further outgrowth of these methods to make 
use of unlabelled datapoints for classification (Zaki & 
Yin, 2008).  Beyer and Cimiano have modified the initial 
algorithm to make it appropriate to realtime problems 
(Beyer & Cimiano, 2011).  They present OSSGNG as a 
topographical mapping algorithm synthesized from the 
various contributing fields.  They examine several 
metrics for determination of the establishment of 
clusters, and find that the minimum distance metric has 
the best performance on problems of interest, which is 
used in the current work.  The algorithm, as well as the 
realtime modifications and active learning modifications 
are described in Fig. 6 and Fig. 7. 

 
 

 
 

2.6. Evaluation Approach 
Given that this method of model creation is relatively 
new, it requires a novel method of assessment.  To do this 
assessment, for each individual a model is created over 
time in each of a supervised, semi-supervised, and 
unsupervised fashion.  At the time of assessment, each of 
the unlabeled groups is given a label according to the 
majority-class of the true labels contained within it.  As 
such, an unsupervised approach which draws a single 

cluster over each datapoint will have a 100% accuracy 
score, despite a lack of utility.  Configuration settings for 
each algorithm were taken to create a minimal number of 
categories for labeling. 
As a byproduct of the evaluation algorithm, each of the 
models begins with 100% accuracy, as, in each 
algorithmic case a single datapoint generates a single 
cluster and the majority-class of the cluster is correctly 
labeled.  Gradually, as more data about both the user and 
labels comes available, the overall accuracy of the model 
decreases.  This is seen in the overall trend in each graph.  
The research question that this paper is trying to answer 
is whether the approach of creating realtime models on 
the individual level is useful.  As such, it is useful to see 
the overall effect of the model, and how useful it would 
have been, on average, for a given unit of time.  The 
algorithm which is used to assess the performance of 
each of the methods is described below in Fig. 6.  
 

 
The results presented later were analyzed with the 
Receiver Operator Characteristic (ROC) benchmark 
(Hanley, 1989), which plots the proportion of correctly-
classified observations from the positive class (true 
positive rate) against the incorrectly-classified 
observations (false positive rate).  The Area Under the 
Curve (AUC) of this function was calculated.  The AUC 
ROC is designed to compensate for the misleading 
figures of “percentage accuracy” for unbalanced data.  
The AUC ROC measurement allows an algorithm with 
lower overall error rates, either true positive or false 
negative, to score well (Hanley & McNeil, 1983), as the 
all of the categories of possible classification are 
weighted equally.  A measure of 0.5 indicates a simple 
majority-class classifier.  In general, AUC metrics of 
greater than 0.8 are considered good, while classifiers 
lower than 0.6 are considered poor; those scoring in the 
0.2 range in between those values are considered to be 
fair.  The AUC ROC is comparable to the A’ value 
traditional in machine learning literature. 

3. DATASETS AND COLLECTION 

3.1. Dataset #1, #2: Affective and Cognitive Dataset 
from High- and Low-Cost Sensors 

The first two dataset were collected as part of an 
experiment to evaluate low-cost sensors.  College-aged 
military learners experienced a breadth of learning-
relevant emotions while watching videos or playing 
video games.  They were measured by a suite of sensors.  
Cognitive states, such as distraction, are labeled with a 
high-cost sensor.  Affective states, such as frustration, are 
labeled with a self-reporting tool called EmoPro (Kokini 
et al., 2012).  There were 14 usable sets of cognitive data, 

Fig. 6: Initial Pseudo-code description of OSSGNG algorithm 

Present the set of labeled data (LD) to the network, train only on it, 
label accordingly 

Present an input from unlabeled data set (UD), xj,with the previous 
distance metric 

Label xj according to the winning node, remove it from UD, enter 
it into the LD' set 

Loop until UD set is empty 
Present LD and LD' to evaluate performance 
 

Fig. 7: Realtime appropriate pseudo-code description of OSSGNG 

Present a datapoint, finding the two closest items s1 and s2 
If there is a missing label, assign a label based on the nearest item 

(unlabeled is possible) 
Increment ages (detailed originally) 
Proceed with GNG steps, do not loop to reevaluate 
 
Active Learning Modifications: 
When a label is requested, find the network of the largest unknown 

class 
Compute the centroid of this node-created network 
Find and request the label of the point closest to the centroid 

Fig. 8:Pseudo-code of assessment algorithm 
 For x from 10-100, in increments of 10 

 Feed x% of the data to the algorithm 
 For each class created by unlabeled class boundaries 
      Label this class the majority label of true set 

Evaluate for AUC ROC accuracy through input of data for 
classification (next, previous, all seen) 

Destroy model, loop 
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with 19 usable sets of emotional data.  The data was 
collected while users interacted with a training video 
game with validated scenarios to induce specific 
cognitive and emotional states, or while watching videos 
validated to produce cognitive and emotional states.  
Models developed under this effort are designed to 
replace the high-cost sensors measures.  This dataset, and 
the experiment from which it was produced, is referred 
to as Dataset #1, when using cognitive labels, or as 
Dataset #2, when using affective labels.  The features of 
this dataset are described in summary in Table 1.  More 
information on the collection, population dynamics, and 
usability criteria of this dataset can be found in prior 
work (Brawner, 2013). 

3.2. Dataset #3: Vigilance and Eyetracking Dataset 
The experiment that produced the third dataset was part 
of a larger suite of experiments, each of which was 
targeted towards different objectives.  The first of these 
was the objective to examine the relationship of 
workload and multi-tasking performance as part of a 
Mixed Initiative Experimental (MIX) testbed, which 
incorporates theory-driven tasks into a moderately high-
fidelity military simulation designed for multi-tasking 
and physiological data capture (Reinerman-Jones, 
Barber, Lackey, & Nicholson, 2010).  The most relevant 
experimental purpose is to create generalized models of 
physiological response to situations of changing 
workload in order to preemptively reduce workload in 
the future (Barber & Hudson, 2011).  This dataset was 
collected as part of an experiment to evaluate 
physiological response to situations of changing 
workload, a cognitively relevant learning state.  College 
students experienced simultaneous tasking on detecting 
changes and indentifying threats on a displayed monitor.  
Their cognitive state was monitored by a suite of sensors, 
with the data cognitively labeled with a high cost sensor.  
Models developed under this effort are intended to aid in 
classification of workload, with the intent of having a 
system compensate during times of high/low operator 
workload.  This dataset, and the experiment that 
produced it, is referred to as Dataset #3.  More 
information on the college and population dynamics of 
this dataset can be found in prior work (Brawner, 2013). 

3.3. Dataset #4, #5: Medical Learning Kinect 
Dataset, 2013 and 2016 

There are two datasets subject to analysis in this paper, 
one from 2013 and one from 2016 (DeFalco, et al., 2017).  
They were both collected from a class of United States 
Military Academy (USMA) cadets as they interacted 
with a Tactical Combat Casualty Care Simulation 
(TC3Sim).  Participants interacted with the system for 
approximately an hour of total protocol, while 
approximately 25 minutes were spent within the 
simulation.  The participants were monitored via within-
system interactions as well as via Microsoft Kinect 
sensor.  While the participants interacted with the system, 
the BROMP protocol (Ocumpaugh, Baker, & Rodrigo, 
2012) was used in order to label the data of affective 
states of the learners as it was observed among the 

participants in order to label the “ground truth”.  There 
are advantages and disadvantages to different labeling 
schemes (DeFalco, et al., 2017), but in-field observations 
have been found to be relatively stable over time 
(Ocumpaugh et al., 2012). 
The initial 2013 collection saw the development of 
various feature extraction methods, which were used in 
both studies to compare benchmark performance.  The 
features and models from the 2013 study were used in 
2016.  The raw features of the Kinect data include the 
center shoulder position, head distance, and top of skull 
distance.  Of the 91 vertices recorded by the Kinect 
sensor, only three are utilized for posture analysis: 
top_skull, head, and center_shoulder. These vertices 
were selected based on prior work investigating postural 
indicators of emotion with Kinect data (Grafsgaard, 
Wiggins, Boyer, Wiebe, & Lester, 2014).  Derived 
statistical and windowed features are calculated over top 
of these items, including the minimum observed, 
maximum observed, median, variance; each of these 
features is additionally calculated for 5/10/20 second 
windows.  Further and more specific information on the 
dataset can be found in other works (DeFalco, et al., 
2017; Rowe, Mott, & Lester, 2014; Rowe, Lobene, & 
Sabourin, 2013). 

3.4. Summary of Dataset Features 
Due to paper length limits, a discussion of all of the 
features, meaning behind the features, and derived 
features of all of the sensors, across each of the five 
datasets, is not possible.  Feature extraction was 
performed on dataset #1 and #2, with simple statistical 
measures (mean over a time period, difference from last 
observation, etc.).  No effort for feature engineering was 
attempted on dataset #3.  Extensive feature engineering 
was performed on dataset #4 and #5, and more 
information can be found in the publication which 
discusses the process (Paquette et al., 2016).    The 
sensors, labels, and measurement across the number of 
datasets are presented in Table 2.  Dataset #5 did not have 
any occurences of Boredom during observation, so 
models of Boredom are not considered in any of the 
models created. 
 
Table 1 – Summary of sensors and ground truth across 
datasets (bold italics indicates ground truth, * indicates 

feature extraction previously performed) 
Dataset Sensor Measure 
#1* ABM EEG HighEngagement 

Distraction 
Workload 

#2* EmoPro 
 

Anger 
Boredom 
Fear 

#12 Neurosky 
EEG 

Alpha1, Alpha2, Gamma1, 
Gamma2, Delta, Beta1, 
Beta2, Theta, Attention, 
Meditation 
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#12 Zephyr 
HxM 

Heart 

#12 Motion 
(custom) 

Motion 

#12 Chair 
(custom) 

Chair1-8 

#12 Eye 
Tracking 
(custom) 

LeftEyePupilDiameter 

#3 FaceLab 5 IndexofCognitveActivity 
#3 FaceLab 5 FixationDuration, 

PupilDiameter 

#45* BROMP 
Boredom, Confusion, 
Engaged Concentration, 
Frustration, Surprise  

#45 
Microsoft® 
Kinect 

Various, see text. 

 
4. RESULTS 
Given that a single user had ten datapoints, one for each 
of ten percentage points among the timeline, a summary 
presentation of data is required.  Firstly, it is useful to 
note that performance starts high, as a single point 
represented in a single cluster has a 100% accurate 
classifier to categorize it. 
Models with a performance benchmark below 0.6 are 
typically considered unusable.  The above table shows 
that the best performance models using realtime methods 
for Dataset #1 and Dataset #3 are below any reasonable 
margin of usability.    Among the usable models, the most 
common usable techniques consistently are the neural 
and grouping techniques represented by ART and K-
means clustering. 
Summary results can be presented in multiple manners – 
graphically, numerically in a number of single-model 
tables, or via summary table.  The results are presented 
in this manner in Fig. 9, Fig. 10, and Table 2, 
respectively.  Many results from many models and many 
studies are presented in this paper, with the goal of 
answering the “does this approach work?” question.  
Table 2 is best to answer this question, but it is based on 
the data shown in Fig. 9, Fig. 10, and many other similar 
figures, a substantial fraction of which have been 
published elsewhere (Brawner, Gonzalez, 2013). 

 
Fig. 10: Boredom model qualities with supervised ART 

algorithm, Dataset #2 
User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg
4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000
4133 0.96 0.92 0.92 0.77 0.70 0.71 0.68 0.72 0.58 0.773
4131 0.97 0.66 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.939
4127 0.63 0.67 0.60 0.60 0.53 0.51 0.62 0.51 0.65 0.591
4121 0.80 0.95 0.82 0.81 0.83 0.83 0.81 0.84 0.77 0.829
4111 1.00 1.00 1.00 0.75 0.73 0.79 0.83 0.74 0.79 0.846
4115 1.00 1.00 1.00 0.95 0.63 0.91 0.52 0.79 0.58 0.821
4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000
4136 1.00 1.00 1.00 0.60 0.60 0.60 0.60 0.60 0.60 0.733
4137 0.91 0.78 0.74 0.73 0.76 0.78 0.80 0.81 0.82 0.792
4101 0.66 0.66 0.66 0.64 0.65 0.74 0.72 0.64 0.63 0.665
4117 1.00 0.67 0.52 0.67 0.72 0.51 0.56 0.58 0.59 0.648
4102 0.85 0.79 0.78 0.85 0.80 0.67 0.71 0.76 0.81 0.780
4105 0.80 0.84 0.84 0.69 0.62 0.66 0.63 0.62 0.66 0.708
4104 1.00 1.00 0.75 0.87 0.80 0.74 0.66 0.73 0.75 0.810
4107 1.00 1.00 1.00 0.75 0.79 0.74 0.79 0.79 0.79 0.848
4106 0.65 0.75 0.67 0.75 0.70 0.64 0.70 0.70 0.72 0.699
4112 0.98 0.88 0.88 0.88 0.78 0.78 0.65 0.60 0.58 0.779
4132 1.00 1.00 0.79 0.89 0.84 0.85 0.87 0.86 0.75 0.873

Average 0.906 0.872 0.839 0.800 0.760 0.760 0.743 0.750 0.739 0.796
18 95%Total Usable (avg ROC >0.6): Percent Usable:  

5. DISCUSSION 
Methods for realtime model creation are fundamentally 
handicapped when compared to traditional model 
creation methods.  They are tasked to predict with a 
fragment of the total data, under strict time constraints.  
Given how unlikely the offline-created models are to 
transfer to a field of use, a practitioner should consider a 
small drop in overall accuracy to be acceptable.  Large 
drops in accuracy, or models which poorly model the

Fig. 9:  Unsupervised, Supervised, and Semi-Supervised 
performance of the ART algorithm over time, Dataset #5 
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Table 2 – Summary of Model Performances.  TIE indicates similar performance for ART and clustering unless otherwise 
noted.  Instances where models are usable are bolded, usable instances (semi-supervised only) are italicized. 

Dataset Best Supervised 
Model / Quality 

Best Semi-Supervised 
Model / Quality 

Best Un-Supervised 
Model / Quality 

Prior Benchmark 

#1 (Distract) TIE       .552 
Inck & GNG 

GNG    .538 Inck       .537 .81 

#1 (Engage) TIE       .560 TIE       .555 TIE         .555 .80 
#1 (Workload) Inck     .529 VW      .520 GNG      .524 .82 

#2 (Anger) ART      .776 Inck     .677 TIE         .652 <0.6 
#2 (Boredom) ART      .796 Inck     .626 TIE         .612 .79 

#2 (Fear) ART      .841 Inck     .810 TIE         .805 .83 
#3 (ICA) GNG    .505 GNG    .506 GNG      .504 N/A 

#4 (Boredom) Inck     .886 Inck     .888 Inck     .891 0.528 
#4 (Confusion) Inck     .820 Inck     .820 Inck     .831 0.535 
#4 (E. Conc.) Inck     .949 Inck     .765 Inck     .952 0.532 

#4 (Frust.) ART     .939 TIE       .939 ART      .941 0.518 
#4 (Surprise) ART     .954 ART      .954 ART      .955 0.493 

#5 (Confusion) ART    .630 Inck     .640 Inck     .750 0.489 
#5 (E. Conc.) Inck     .595 Inck     .595 Inck     .647 0.546 

#5 (Frust.) TIE       .851 ART      .851 TIE       .851 0.331 
#5 (Surprise) TIE       .932 TIE       .932 TIE       .932 0.51 

underlying phenomenon should, of course, not be 
considered for application. 
These methods failed on two of the above datasets (#1 
and #3), experienced only moderate success on one of the 
above datasets (#2), and experienced significant success 
on two of the datasets (#4, #5).  In a discussion, we 
should consider the things that both failure and success 
have in common.  In short, these are the frequency of 
data, quality of labels, and quality of feature extraction. 

5.1. Quality of Labels 
Firstly, there should be a note about the variance in the 
quality of the labels.  There are a variety of labeling 
techniques, each with its own advantages and 
disadvantages (Brawner & Boyce, 2017).  Dataset #1 and 
#3 used an automated sensor system to assign label 
individual cognitive states.  These cognitive state labels 
change multiple times per second.  In contrast, Dataset 
#2 used self-report labels to label a state experienced 
during the total, but short, interaction.  This creates a 
more stable label, but may not be an accurate 
representation of ground truth due to the time between 
labeling and the experience.  In contrast, The BROMP 
protocol labels of Dataset #4 and #5 are relatively stable 
at approximately 1 minute resolution, but taken during 
live interactions without delay.  The best overall 
performance was observed with the stable labeling 
techniques that are likely to be observed in real-world 
performance. 
The datasets with the worst performance (#1, #3) used 
labeling techniques for cognitive states, while the 
datasets with the best performance (#2, #4, #5) used 
labeling techniques for affective states.  D’Mello would 
categorize affect as either states, traits, moods, or 
emotions (D’Mello, Blanchard, Baker, Ocumpaugh, & 
Brawner, 2014), which are defined partly by the 

longevity of their experience.  The “sweet spot” for ITS 
is in relatively short affective emotions (anger, fear) or 
affective-cognitive blends (confusion, concentration), 
and not long-lasting moods (depression) or ephemeral 
cognitive states (distraction).  The methods described in 
this work function well inside the “sweet spot”, but 
generally fail outside of it.  Simply, the methods 
presented here work well for the types of occasions 
where it would be used – relatively short term 
classifications of relatively short term states. 

5.2. Frequency of Data 
The frequencies of the Datasets varied significantly, as 
shown in Table 3.  Each of the method selected is capable 
of realtime performance, but unusually high frequency is 
one possible reason for poor model performance with 
Dataset #3, and may have served to compound errors 
with labeling quality. 

Table 3 – Dataset Frequencies 
Dataset Frequency 
#12 ~1 Hz 
#3 ~3500 Hz 
#45 ~0.7 Hz 

5.3. Quality of Feature Extraction 
The best performing datasets (#4, #5) already had 
significant feature extraction performed in addition to 
useful-quality models based on the extracted features.  
Moderately performing datasets (#1, #2) had only 
statistical features (mean, difference, etc.).  Poorly 
performing dataset (#3) had no manufactured features 
whatsoever.  Generally speaking, the higher quality, as 
shown by their utility in offline-created models, of the 
features indicates that the realtime models will perform 
better.  It is worthwhile to note that effort was spent in 
order to make an apples-to-apples comparison of model 

Proceedings of the International Defense and Homeland Security Simulation Workshop, 2017 
ISBN 978-88-97999-90-4; Bruzzone, Cayirci and Sottilare Eds.

14



– the realtime and offline models were always made with 
the exact same features.  A data scientist making models 
for utility is not bound by these constraints and is free to 
manufacture features as they see fit. 

 
6. CONCLUSIONS 
Generally speaking, the technique of realtime modeling, 
as opposed to offline modeling, works.  It should not be 
forgotten that the alternative to this type of approach is 
the traditional process involving online collection, 
offline creation, and online usage, which has yet to see 
results in the field of practice; it doesn’t work.  With that 
said, however, there are places where this approach 
shines and places where the approach fails. 
The first area where this approach fails is when the 
learner state is highly fluid in comparison to the 
collection window.  If the learner state changes at 30 Hz, 
but data is collected 1 Hz, it is difficult to algorithmically 
determine learner state.  The experimenter should be 
aware of instances where the learner state is fluid.  The 
second major area of failure is when proper feature 
extraction hasn’t been performed.  Feature extraction is a 
useful process to offline signals and online signals alike; 
failure to isolate proper features will produce unusable 
models. 
Naturally, the opposite of the above failures indicates the 
successes – realtime models can be created if the state is 
changing slowly relative to the feature collection window 
and when proper features have been considered prior to 
interpretation by models.  The goal of this paper is to set 
up provide a guide to creating realtime models and to set 
expectations for performance.  The best realtime models 
observed thus far have had the following features: 
• They attempt to model an affective-cognitive 

combined state, which is relatively stable on the 
order of minutes. 

• They make use of offline experiments for validation 
of feature extraction techniques 

An example experimental setup for affective state 
detection within an intelligent tutoring systems may have 
the following features: 
• Hardware sensors of physiological state - ideally 

standoff sensors such as the Microsoft Band for GSR 
and heartrate measures 

• Existing feature extraction shown useful in other 
contexts – such as a 300ms sliding window of signal 
power on a GSR signal 

• Participant able to label affect states as they come 
available; a system able to request these items 

• Use of one of more machine learning measures, such 
as ART or incremental clustering. 

The intelligent tutoring system described above must 
also be able to perform the other functions of an 
intelligent tutoring system, such as changing the 
instruction to better suit the learner.  Modeling the state 
of the learner is only the start of the process of 
customizing instruction and feedback towards individual 
needs. 
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