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Abstract 

This paper explores the use of Markov Decision Processes 
(MDPs) in support of adaptive course navigation in the 
Generalized Intelligent Framework for Tutoring (GIFT).  
GIFT is an open source architecture for authoring and eval-
uating Intelligent Tutoring Systems (ITSs) and adaptive 
course navigation is an AI-based technique which considers 
attributes of the learner and the instructional context to se-
lect actions which will optimize learning.  GIFT’s current 
adaptive course navigation model is decision tree-based.  
Other ITSs primarily use performance as a driver for navi-
gation without consideration for other learner states. The 
adaptive course navigation model presented aligns closely 
with the principles of MDPs where a user’s current state, 
possible actions and a reward function determine movement 
to a future state. Unlike decision trees used which are cur-
rently used in GIFT, MDPs also account for multiple states 
to determine future states and also consider uncertainty in 
the assessment of learner states.   

Introduction   

Sottilare (2012) developed an adaptive learning effect 

model (LEM) to represent optimal interaction between the  

learner, tutor, and the instructional environment (Figure 1).      

Figure 1.  Learning Effect Model (LEM) for Individuals. 

                                                           
Copyright © 2015, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

This model has been elaborated over time to account for 

real-time interaction for both individuals and teams 

(Fletcher & Sottilare, 2013; Sottilare, 2015), assessment of 

learner competencies across a variety of training tasks in-

volving learning progressions (e.g., marksmanship), and 

assessment of skill development across long time spans 

which might include career-wide progressions.       

 Similar to Vygotsky’s Zone of Proximal Development 

(ZPD; 1978) and tutoring design principles developed by 

Anderson, Boyle, Farrell and Reiser’s (1987) and later 

elaborated by Corbett, Koedinger and Anderson (1997), 

Sottilare and Goldberg (2012) envisioned that cognitive 

load (e.g., working memory) could be optimized by match-

ing the domain competence of the learner and the difficul-

ty/grain size of the problem presented to the learner.  In 

other words, provide more difficult and elaborate problems 

to highly skilled learners and easier, straight-forward prob-

lems to less skilled learners. 

 From a practical standpoint, three areas of learner as-

sessment are critical in order to provide optimal instruction 

and expose the learner only to the concepts required for 

new learning.  First, the ITS must understand the level of 

the learner’s prior domain knowledge. Second, it must be 

able to assess when the learner has mastered new 

knowledge so they can proceed to new concept or learning 

objectives.  Third, in order to keep the learner motivated 

and focused on learning, the ITS must understand when 

new instructional content elicits emotion in the learner 

which might either enhance (e.g., joy, dominance) or de-

tract (e.g., boredom, frustration, long term confusion) from 

learning. 

 The LEM and its associated instructional theory (e.g., 

cognitive load theory, and component display theory) are 

central to how GIFT guides instruction.  GIFT is a largely 

domain-independent architecture which is focuses on reuse 

and best practices to reduce the time and skill needed to 

author complex ITSs.   ITSs developed with the GIFT 

authoring tools also have embedded instructional theory to 

optimize the development of learner knowledge and skills.  
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Component Display Theory (CDT; Merrill, Reiser, 

Ranney, and Trafton, 1992) arranges instruction into four 

phases or quadrants to insure the learner: understands basic 

domain terms and principles (rules quadrant); is exposed to 

domain-relevant models of success (examples quadrant); 

can remember information from the rules and examples 

quadrants (recall quadrant); can successfully apply 

knowledge to structured application to build skills (practice 

quadrant).   

 In addition to CDT, GIFT also uses a decision tree struc-

ture to align learner attributes with recommended instruc-

tional strategies to optimize learning.  This decision tree 

considers learner attributes such as prior knowledge and 

motivation/interest to align instructional content.  The de-

cision tree is based on a large review and meta-analysis of 

the instructional literature.  For example, the pedagogical 

request in GIFT for a motivated journeyman in the rules 

quadrant is for content which is “text/visual information, of 

moderate difficulty, and of interactive multimedia instruc-

tional level 2”.  The primary drawback to the decision tree 

structure is that it assumes learner attributes with 100 per-

cent certainty.  For example, instructional recommenda-

tions based on a learner state of confusion could produce 

negative learning experiences if it turned out that the learn-

er’s actual state was boredom or frustration.  A method is 

needed to deal with uncertainty related to learner state and 

this is our primary motivation in exploring the use of 

MDPs within GIFT. 

Decision Tree Course Navigation in GIFT 

As noted in the LEM (Figure 1), the real-time interaction 

between the learner and the instructional environment pro-

vide the basis for decision-making by the ITS.  The tutor’s 

knowledge of the learner is central to optimizing this deci-

sion-making.  The tutor assesses the learner’s prior domain 

knowledge, analyzes their physical and behavior cues to 

assess the learner’s state, and then uses this information to 

select strategies and ultimately apply tactics (actions) that 

can either affect the learner directly (e.g., support, hints, 

prompts, questions) or affect the complexity of the instruc-

tional environment and thereby the learner indirectly. 

 The part of the LEM that takes action is the domain 

model.  The domain model also assesses the learner’s pro-

gress toward learning objectives or concepts as they are 

referred to in the GIFT ontology (Sottilare, 2012).  As the 

tutor decides what to do at the next turn, it considers the 

learner’s states and traits to plan a strategy. It also consid-

ers the instructional context (where the learner is in the 

course) and the recommended strategy (e.g., prompt the 

learner for additional information) to select a tactic (select 

and appropriate question and ask it). Next we discuss how 

tactical decisions are made in GIFT and how those interac-

tions guide the learner through a lesson. 

Decision Tree-Based Course Navigation in GIFT 

Before exploring a new adaptive method for course naviga-

tion in GIFT, we will review how GIFT currently guides 

learners through a lesson.  For this example (Figure 2), we 

assume a sequential lesson with three concepts (A, B, and 

C) which must be mastered by the learner. 

 

Figure 2.  Sequencing of Concepts (A, B and C) in a GIFT Lesson 

As noted previously, GIFT uses CDT to adapt course flow 

for each learner.  In our example, the learner must master 

concepts A, B, and C and each is presented to the learner 

sequentially in each of the CDT quadrants.  For the rules 

quadrant, the content needed to illustrate the basic terms 

and principles of concepts A, B, and C are presented to the 

learner.  Next examples of n are presented for all three 

concepts.  After that the learner is assessed on their ability 

to recall the information provided in both rules and exam-

ples.  Finally, the learner is asked to apply their knowledge 

in a practice environment to develop skills and show pro-

gress toward objectives (mastery of concepts). 

 In our decision tree architecture, GIFT examines a tuple 

composed of a set of learner states (e.g. domain 

knowledge, cognitive load, and/or affective), an environ-

mental state (where the learner is in the context of the les-

son), a set of actions available to the tutor based on the 

environmental state, and a set of rewards based on progress 

toward mastery (performance state). The ITS may use all 

of these attributes to drive its pedagogical decisions in an 

effort to learn all three concepts in the least time possible.  

With the exception of the learner’s states, all are known 

with reasonable certainty. 

 According to Sottilare, Ragusa, Hoffman & Goldberg 

(2013), the LEM’s learner data and states may be further 

decomposed and used by the tutor to select optimal strate-

gies and tactics.  The learner data may include values, 

preferences, interests, goals, behaviors, and physiological 

measures which can be used directly by the tutor to make 

strategic/tactical decisions or can be used to interpret 

learner states.  Sottilare, et al (2013) also note that learner 

states may include: potential (based on prior domain 

knowledge); performance; cognitive load; affective states 

(e.g., personality or emotions); motivational state which is 

influenced by goals, preferences, and interests; and physi-

cal state (e.g., fatigue, level of motor skills).  Motor skills 
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may be measured in terms of speed, precision, distance, or 

adherence to a particular set of procedures or techniques. 

 In Figure 3, we have a learner who is highly motivated 

to learn about a particular domain and the learner’s 

knowledge of the domain is moderate (journeyman).  For 

each CDT quadrant, GIFT provides a recommended strate-

gy related to the type of content (e.g., text, visual, case 

study) to be presented, the complexity or difficulty, and the 

interactive multimedia instruction (IMI) level.  These rec-

ommendations are based on a large scale meta-analysis of 

the training and education literature. 

Figure 3.  Examples of Tutor Decisions in GIFT    

Agent-Based Approach to Course Navigation 

According to Mitchell (1997), an agent-based approach to 

reinforcement learning is focused on the goal of learning to 

choose actions that maximize current and future rewards.  

The desirable characteristics of these agents are: reactive, 

proactive, and cooperative.  Reactive agents should be re-

sponsive to change(s) in the environment and active in 

enforcing policies or rules.  Proactive agents should take 

the initiative to focus on achievement of long-term goals, 

recognize opportunities, and learn and adapt to optimize 

learning.  Cooperative agents should share information and 

act together to achieve long-term goals. 

 For our purposes, in our MDP, the agent should be able 

to recognize a set of distinct states (S) from which a set of 

finite actions (A) can be performed.  Individual actions (a) 

should result in movement to a next state (s) and an associ-

ated reward (r).  At each turn, the tutor will assess the cur-

rent state of the learner and their performance, and provide 

a reward based on progress in mastering concepts.    

 For an agent-based model, Figure 4 shows the relation-

ship between states, actions, and rewards for the learner, 

the environment (instructional content) and the agent.  The 

agent monitors the state of both the learner and the envi-

ronment (instructional content) and can change the level of 

interaction with the learner (e.g., support) or the level of 

difficulty of the environment.  

 Rewards can change based on progress toward goals or 

concepts or by demonstrating higher skills by solving more 

difficult problems in the environment.  Interaction between 

the learner and the environment is typical of non-adaptive 

training systems where the learner can observe the envi-

ronment and act on it, but neither the learner nor the envi-

ronment can determine rewards.  The cumulative value 

(V
Π
) achieved by following a policy (Π) from an initial 

state (st) follows: 

 

                                              ∞ 

V
Π 

(st) ≡ rt + γ rt+1 + γ
 2
 rt+2 + … ≡ Σ γ

 i
 rt+i 

                                                                     
i=0              

where γ (0 ≤ γ < 1) is a constant that determines the rela-

tive value of rewards.  For γ =0, only the immediate reward 

is considered for all states and as γ approaches 1, future 

rewards are given greater and greater consideration over 

rewards associated with initial states. 

 

Figure 4.  States, Actions, and Rewards 

   

 Figure 5 illustrates positive (green arrows) and negative 

(red arrows) rewards for actions in the environment (spe-

cifically in the rules quadrant).  In this model the learner is 

rewarded for taking actions to acquire new knowledge, but 

not rewarded for going back to review old knowledge.   

 

Figure 5.  Learner Performance States (progress toward objec-

tives where each box represents a learner’s performance state) 
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The same type of reward system could easily be imple-

mented in GIFT for the examples, recall, and practice 

quadrants of CDT.  Probabilities for a small number of 

possible actions available in each state could be ascertained 

over time and the negative assessments in recall and prac-

tice could form a reinforcement learning policy similar to 

the Q function (Mitchell, 1997, p. 374-377).  For example, 

the agent would observe the current state (s), and then se-

lect an action (a) based on learner actions. The ITS would 

then receive an immediate reward and observe a new state 

(s’).  By recording and comparing/contrasting rewards over 

time, this method allows the tutor to learn how to select 

highest rewards states and how to avoid incorrect learner 

state assessments. 

Discussion 

In this paper, we have contended that the reinforcement 

learning strategies associated with MDP offer distinct ad-

vantages over rule-based or decision-tree based AI solu-

tions.  In scenarios where learner states can vary widely 

and are often difficult to determine, MDPs offer more flex-

ibility in acquiring and analyzing learner data to determine 

states and matches to optimal outcomes.  MDPs also allow 

for a variety of outcomes/rewards given the same state and 

action whereas decision trees and rule-based solutions of-

fer only a single path.  For instance, we might select a dif-

ferent, but optimal instructional tactic for identical learner 

states and environmental conditions because the values or 

preferences in individual learners are different.    

 A central question to optimizing the selection of strate-

gies and tactics is what desired outcome or outcomes are 

related to the reward state in our MDP.  In our LEM, effect 

size is a measure for quantifying the difference between 

the rewards resulting from multiple strategic or tactical 

options.  Learning effect is a measure of the difference 

between instructional methods on learning gains.  For our 

purposes we have selected four important outcomes:  ac-

celerated learning, deep learning and enhanced retention, 

enhanced performance, and enhanced transfer as discussed 

below.   

 Accelerated learning results when adaptive instructional 

methods decrease the amount of time needed to acquire a 

unit of knowledge or develop a unit of skill compared to 

traditional (currently implemented) instructional methods.  

It may be possible to accelerated learning by skipping old 

instructional content based on an individual’s domain 

competency.  It may also be possible to accelerate learning 

by understanding when a learner has achieved mastery of a 

concept and then moving them to the next concept as soon 

as practical. 

 Retention is the ability to maintain a level of knowledge 

and skill to remain proficient in a particular task.  Deep 

learning and enhanced retention can result when learners 

encounter “desirable difficulties” (Bereiter & Scardamalia, 

1985; Bjork, 1988) and are challenged to work harder dur-

ing initial learning experiences.  This invites "deeper pro-

cessing of material than people would normally engage in 

without explicit instruction to do so" (Bjork, 1994).  The 

idea that desirable difficulties can gel learning and support 

longer term retention is a principle adopted within GIFT’s 

pedagogical structure in the form of “indirectness” as de-

fined in the INSPIRE model of tutoring (Lepper, Drake, 

and O’Donnell-Johnson, 1997).  Desirable difficulties are 

an important adaptive tutoring strategy and they are closely 

related to Vygotsky’s ZPD (1978), but instead of matching 

the competence level of the learner and the instructional 

material, we are challenging the learner to reach.      

 Most structured practice is geared toward enhancing 

performance.  Whereas learning is the acquisition of 

knowledge and skills, performance is the result of applying 

knowledge and skill.  There is often a divide between prac-

titioners (trainers) and theorists (educators) with respect to 

performance.  The focus for practitioners is to enhance 

performance to varying levels of automaticity without the 

need to understand why certain methods are used.  Theo-

rists tend to focus not only on what is being done, but why. 

 Finally, the transfer of skills from one environment (e.g., 

training system) to another environment (e.g., operational 

system) is an important element of learning and a consid-

eration for an agent-based system concerned with optimal 

instruction.  The selection of instructional methods may 

need to vary based on the weight of the desired outcome.  

For instance, if transfer is more heavily weighted than near 

term performance for a learner with significant domain 

experience, we might want to place more emphasis on in-

structional tactics that align more closely with how the task 

is performed in the operational environment to promote 

higher transfer of skills. 

 A drawback to any adaptive solution is that the ITS au-

thor would then need to identify each and every one of the 

learner state transitions that should result in the delivery of 

an instructional strategy (e.g., if the learner is frustrated, 

then the author might adapt the scenario to be easier). In 

some instances, a defined state transition may happen more 

than once, in which case, the author would need to provide 

more than one instructional strategy to choose from and 

this is an additional authoring burden. Furthermore, each 

strategy then has one or more tactics (an action based on a 

plan or strategy) to choose from. While this flexibility al-

lows GIFT to move away from a fixed state diagram and 

introduce probabilities, it comes at a cost to the author.   

 The reward structure examined in this paper was limited 

to optimizing near term reward (discounting) at the ex-

pense of life-long learning.  There are many instances 

where near term performance could and should be sacri-

ficed for the sake of learning valuable lessons which allow 
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the learner to more easily retain and transfer knowledge 

and skills to a broader array of domains.  In the same in-

stance, we could also see the possibility of sacrificing 

learning to enhance the confidence or esprit de corps of 

low performing learners. 

MDP Applied to GIFT 

As noted, once GIFT makes a selection based upon an im-

precise assessment of a learner’s state, there is no mecha-

nism to validate the accuracy of that learner state in the 

future or to adjust the decision tree to provide another rec-

ommendation based on identical conditions.  MDPs offer 

the capability to examine options for moving forward to 

the next performance state and enable reinforcement learn-

ing over the long term to support continuous improvement 

of strategy and tactics selections.   

States and Rewards 

So, how should the state, s, be represented in an agent-

based GIFT?  Based on the models shown in Figures 4 and 

5, elements of the learner’s state and the environment are 

necessary to select optimal strategies and tactics within 

GIFT’s architecture.  For the learner’s state, we need to 

represent the following elements: prior domain knowledge; 

concepts under instruction; progress toward learning objec-

tives at any time, t, in the instructional process; emotional 

states that are moderators of learning.   In defining the 

components of a state, s, we have noted the importance of 

four sub-states.  These sub-states provide a mix of learner 

states and a list of potential actions by the tutor where 

maintaining positive learner states and progress toward 

learning objectives are associated with higher rewards.   

The following is a decomposition of the elements of those 

sub-states: 

 

 Prior domain knowledge (competence level = nov-

ice, journeyman, expert) 

 

 Concepts under instruction (list of concepts = A, B, 

C; order of instruction)  

 

 Progress toward learning objectives (rules re-

viewed for A, B, C; examples reviewed for A, B, 

C; recall tested for A, B, C; skills tested for A, B, 

C) 

 

 Emotional states (states observed; negative states 

moderated; positive states maintained) 

 

Optimizing Actions in GIFT  

Movement from one state to another results in a positive 

reward when a concept is either reviewed (rules quadrant), 

reviewed (examples quadrant), assessed (recall quadrant), 

or assessed (practice quadrant).  Additional rewards are 

provided when moving from one quadrant to another, and 

when demonstrating mastery of a concept within a quad-

rant. 

 Below are recommended implementations for an agent-

based course navigator for GIFT based on our four desired 

outcomes: accelerated learning, deep learning and en-

hanced retention, enhanced performance, and enhanced 

transfer.   

 

For Q learning (Mitchell, 1997), the agent is attempting to 

learn an optimal policy (Π*) where the optimal action (a) 

in state (s) is the action that maximizes the sum of the im-

mediate reward (r) plus the value of the immediate succes-

sor state as discounted by γ: 

                                               
Π* (s) ≡ argmax [r (s, a) + γ V* δ (s, a)] 

 

To optimize actions for our accelerated learning outcome, 

the immediate reward is most important as it lessens deci-

sions to review old material and thereby accelerates learn-

ing (see Figure 5).  Therefore, γ = 0 since it reduces the 

value of the immediate successor state to 0 and rules out 

any rewards with negative values (e.g., old information). 

 To optimize actions for our deep learning and enhanced 

retention outcome, the immediate reward is less important 

as it increases decisions to review old material and thereby 

deepens learning (see Figure 5).  Therefore, as γ approach-

es 1, it increases the value of the immediate successor state 

over the immediate reward. 

 To optimize actions for our enhanced performance out-

come, the immediate reward is important, but so is overall 

value.  Therefore, as γ should be adjusted to optimize the 

sum of value of the immediate reward and the immediate 

successor state.   

 Finally, to optimize actions for our enhanced transfer 

outcome, the immediate reward is less important than later 

rewards.  Therefore, as γ approaches 1, it increases the 

value of the immediate successor state over the immediate 

reward thereby optimizing actions which enable higher 

transfer from the training environment to the operational 

environment. 

Conclusions 

We provided a potential solution for expanding the flexi-

bility and introducing stochastic elements into the adaptive 

instructional process.  This could be done without major 

changes to the GIFT architecture, but comes with a cost in 
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terms of time and skill in the authoring process.  Since 

each action in the MDP must be accounted for in terms of 

actions, the MDP solution should also be paired with AI-

based solutions for simplifying the authoring process for 

ITSs.   

  MDPs from a stochastic point of view are also attractive 

alternatives to decision-trees based on the ability to project 

expected value or expected total reward into the future 

based on known decision chains.  

 This paper examined elements of the MDP related to the 

instruction of individuals.  The development of MDPs for 

team-based activities poses a much more significant chal-

lenge in terms of complexity.  State assessments for teams 

are more complex and less accurate so generalized rules 

based on the team instruction literature applied to the ini-

tial states in an MDP could lead to some experimental 

strategies which yield future best practices. 
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