
ANTI-SUBMARINE WARFARE MODELING AND SIMULATION

Deniz Aldogan, Mehmet Haklidir, Levent H. Senyurek , Yasemin Timar , Semuel Franko , Omer Eroglu , A.Faik

Guven , H.Murat Genc

Tubitak Informatics and Information Security Research Center

 {deniz.aldogan, mehmet.haklidir, levent.senyurek, yasemin.timar, semuel.franko, omer.eroglu, afaik.guven,
murat.genc}@tubitak.gov.tr}

ABSTRACT
Submarines, modern naval warfare scenarios, especially
in the context of asymmetric war remain the one of the
most important platforms. Therefore, improvement of
Anti-Submarine Warfare (ASW) capabilities is among
the most crucial aims of many countries. In this field,
they reduce the cost of training, reduced the potential
risks and to provide a variety of tactical situations to
military training purposes can be tried for fast
simulation applications are more preferred to use.
 In this simulation software study, complicated
tactical situations can be simulated in various operating
conditions and which involves tactical entities that can
execute ASW commands autonomously, is explained.
Surface, submarine, rotary-wing and fixed-wing
platforms modeled in the current simulation system.
These target platforms are equipped with various
sensors, weapons and acoustic countermeasure systems.
Target platforms can realize basic tasks such as moving
towards a waypoint or along a path as well as complex
tasks such as searching and engagement autonomously
both individually and in groups called as convoys.
Additionally, they can also display reflexive behaviors
such as land, entity or enemy/torpedo avoidance. For
managing scenario preparation and simulating
Computer Generated Forces (CGF), the VR-Forces
infrastructure, a commercial application framework, has
been customized. The capabilities of the platforms
developed to implement the software modules are
integrated into the architecture of this infrastructure
component CGF simulation engine. Results represent
that platforms exhibit realistic behavior even in difficult
conditions.

Keywords: Anti-Submarine Warfare, Modeling,
Simulation, Virtual Forces

1. INTRODUCTION
In high-fidelity simulations, one of the most critical
tasks that can be assigned to a simulation component is
the modeling and simulation of different platforms. To
provide high-fidelity, both realistic models and realistic
controls should be employed for realizing the behavior
of computer generated forces (CGF) in simulation. In
addition to CGF capabilities, tactical simulations mostly

require a scenario preparation application. Distributed
simulation frameworks provide collaboration of
different types of modules that have their own
complicated modeling and algorithm mechanisms. We
used a commercial simulation framework for this goal.
This framework provides some basic abilities to all
system; nevertheless, it is not possible to satisfy all
necessities.
 In this study, we shortly explain framework we
used and modules that we integrated into that
framework. Platforms we used have complex equations
of motion and speed control, as well as they have
various tasks such as move-to, search, engage. While
performing main tasks platforms use fuzzy controller,
land and other realistic targets avoidance behavior
controller. Besides basic types of tasks we have convoy
mechanism that we explained below. By the help of
convoy mechanism platforms perform more complex
tasks and act together in different situations. We
designed and implemented our complex modules in
different way and integrated them to main framework.
Hereby, reusability and flexibility of software is
achieved.
 The software modules for the motion models,
sensors, weapons and the fuzzy controllers belonging to
platforms have been implemented in the C++
programming language and have been integrated to the
component architecture of VR-Forces CGF application
(VR-Forces back-end) as composite objects (VR-Forces
Developer’s Guide, 2006 ; VR-Forces The Complete
Simulation Toolkit, accessed 2011). In addition to this,
convoy mechanism and other complex task modules
also implemented as separate modules and integrated to
main software.
 The remainder of this article is organized as
follows. We briefly explain our main framework in
section 2. In section 3, we explained artificial
intelligence and tactical environment simulation. In
section 4, we describe our main focus on convoy
mechanisms and how to work complicated modules. In
section 5, we explained our software design in detail.
We illustrate some simulation results in section 6.
Finally, section 7 concludes the article.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

77

mailto:mail@uni.edu
mailto:mail@uni.edu

2. GENERAL SIMULATION ARCHITECTURE
In this study, movement models that take into account
the environmental conditions (wave, current, wind,
season, day and night difference) and hydrodynamic
forces have been developed for surface, submarine and
rotary wing platforms each with 6 degrees of freedom.
The motion of all platforms is considered in 6 degrees
of freedom since six independent coordinates are
necessary to calculate state information of a rigid body.
We explained in detail our previous work (Haklidir,
Aldogan and Tasdelen, 2008; Franko, Koksal and
Haklidir, 2009; Haklidir, Guven, Eroglu, Aldogan and
Tasdelen, 2009)
 Simulation architecture of VR-Forces, which is
basically a commercial product being used in
architecture, originally developed controllers and
modules are integrated into this architecture.VR-Forces
mainly have two main modules that are listed as back-
end and front-end side. Front-end side provides
management of scenario and simulation execution
control. On the other hand, back-end side provides
modeling and simulation of entities, controlling remote
control entities, management of local entities’ plan and
all other issues such as task, set.

According to design of VR-Forces, each entity has
three types of components: sensors, controllers and
actuators. Sensors, allows you to retrieve information
about the environment around the object. Controllers,
receive information about assigned task and lead object
for task. Actuators, organize task information, run
motion model regularly and update objects’ information
such as speed, location. Commercial toolkit
independent controllers are used to simulate
quartermasters of the surface platforms. A flexible
fuzzy logic that capable of simulating human expert
behavior has been implemented. Fuzzy logic
controllers, which are in fact heading and speed
controllers that utilize fuzzy logic for their calculations,
are implemented in conjunction with land avoidance
calculations (Senyurek, Koksal, Genc, Aldogan and
Haklidir, 2008).

Sensors have very important roles while platforms
performing their task and making decisions. Each
sensor component have been developed and integrated
as a separate software module. Developing every
advanced feature to be integrated into the entity
behaviors as commercial toolkit independent software
modules has been adopted throughout the realization of
our system to maintain modularity and reusability. For
further investigation, the reader can refer to our
previous work (Aldogan, Haklidir, Senyurek, Koksal,
Eroglu, Akdemir, Franko, Tasdelen and Akgun, 2009).

3. TACTICAL ENVIRONMENT SIMULATION
AND ARTIFICIAL INTELLIGENCE

Utilization of modeling and simulation technologies in
military areas is observed more frequently specifically
on training and analysis applications. Creation of the
tactical environment via Computer Generated Forces

(CGF) and construction of war space with sensor and
weapon capabilities of the entities in this environment
has been seriously dealt with since 1980’s and has come
along crucial improvement processes up to now (Pratt,
1996; Kocabas and Oztemel, 1998).

 The development of CGF can be analyzed in 5
subsequent phases. First generation CGF realizes
scenarios simply without using behavior models.
Second generation systems execute simple behavior
models. Routes and roads are determined by the user
before or during scenario run while interactions can
only be on these structures. Third generation systems
apply tasks which are composed of previously planned,
rule or state based modules. In such systems, there is a
hierarchy mechanism between tasks. Furthermore, these
tasks can be applied in parallel or sequentially to form
other complex tasks and behaviors. Fourth generation
systems possess autonomous command control
processes over advanced third generation systems. Fifth
generation systems have capabilities such as goal
selection or learning (Aldogan, Haklidir, Eroglu,
Franko, Timar, Guven, Senyurek, Genc, 2013).

 The system implemented in this study has abilities
of a third generation system. The user is the decision
mechanism in command control processes except a few
reflexive situations (land avoidance, target avoidance,
etc.). The user can decide on issues such as which
entities will take place in a specific scenario, which
capabilities and parameters the sensors and weapons of
the entities will have or on which areas, roads or routes
the task will be carried out. These decisions can be
made before or during simulation run. Once decisions
have been made, tasks are performed autonomously in
accordance with the chosen task parameters and
behavior models.

Operator

SearchEngagement Formation Screen

Sensor

Torpedo

Keep Track

Move

Move To Waypoint Move Along Route Move Through a Plan

«uses»

«uses»

«uses»

«uses» «uses»

«uses»

*

*

*

*

*

*

*

*

*

*

«uses»
«uses»

«uses»

Figure 1 - Task and Behavior Hierarchy

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

78

 Behaviors have been placed in task frames and
these frames have been placed in other task frames.
Therefore, main goals have been comprised of a task
hierarchy. In this way, it is aimed to facilitate the
construction of complex tasks and behaviors. The
corresponding hierarchy is given in Figure 1.

4. ANTI-SUBMARINE WARFARE (ASW)
CAPABILITY

4.1. Preferred Architecture and Basic Components
for Implementing ASW Skills

A proper tactical training simulator should provide
realistic target behaviour. Therefore ASW capability for
marine ships and rotary wing platforms should be
integrated into corresponding Artificial Intelligence
(AI) models used in the training simulation.

As part of our work, requirements of ASW
publications are surveyed for defining proper tactical
behavior. Then, a set of basic actions are determined for
developing a limited number of corresponding low level
controllers which are used as building blocks to
construct different complex tactical actions.

As a result, autonomous ASW capability of
platform models is implemented considering an
hierarchical behavior-based control architecture as in
several other approaches in the literature (Michael,
Henrik, Paul and John 2010; Krishnamurthy and
Khorrami 2011; Aveek, Rafael, Vijay, James, John and
Camillo 2002).

It is critical to properly determine the afore-
mentioned basic/low level controllers to simplify the
construction of complex behaviors. In our work we
determined these controllers as a leader following
controller. Speed controller for marine ships. For rotary
platforms, leader following was unnecessary while an
extra altitude controller was needed. These basic/low
level controllers are constructed as fuzzy logic
controllers for marine ships and as Linear Quadratic
Regulator (LQR) controllers for rotary platforms. They
all consist of separate components for speed and
direction control.

For realistic response, land avoidance and conflict
prevention behaviors for marine ships are also
integrated into these basic actions. Land avoidance
works in parallel with leader following and targeting
behavior, as it controls the speed and direction of the
models together with these controllers in a weighted
manner. On the other hand, conflict prevention takes
full control when necessary.

4.2. Constructing Complex Tactical ASW

Capabilities
ASW tactics are applied by groups of platforms (marine
ships and rotary wing platforms), which are called as
convoys in these study.

Basic ASW behavior for a convoy is cruising in
formation. For implementing such an action, convoy
marine ships just apply the afore mentioned (low level)

leader following control permanently. Both marine
ships and rotary wing platforms might also be given
screening duties, which is accomplished through (low
level) targeting controllers. This time, for effective
screening, several random target points inside a
predetermined screen area are assigned to the
corresponding models and each point is targeted one
after another which is coordinated through high level
screen controllers producing a realistic screening action.

Within the scope of ASW, applications of a search
mission have similarities to convoy cruising. Searching
is mainly cruising in an area with activated sensors,
applying some special maneuvers if necessary. Again,
each target model is assigned a set of target points
which are visited in a specific order determined by high
level search controllers. For accomplishing parallel
search mission –another ASW search method– on the
other hand, platforms apply targeting control for
reaching their starting points in the first phase, while in
the second phase they cruise parallel to each other
exploiting basic formation control.

Similarly, for accomplishing convoy obstacle pass,
basic behaviors are serialized in different phases. In the
first phase each platform visits the canal points one by
one while in the second phase they shift back to
formation control.

Note that, applying leader following formation
control does not necessarily need a leader platform to be
determined. To accomplish most of the ASW tactics,
imaginary leaders are created for more stable action,
following similar works in the literature.

Attack missions have an additional attack phase in
which platforms maneuver for assuring right conditions
for weapon firing before firing their torpedoes’. This is
also accomplished through basic targeting and altitude
controllers.

4.3. Some Additional Information about Rotary

Wing Platform Models Applying ASW
Rotary wing platform models, when arrived to a target
point, hover at that point at a specified altitude and
investigate their neighborhood via dipping sonar –
which in our work is modeled as another mechanical
element controlled by a separate controller applying the
mission specific orders of the corresponding high level
mission controller.

Since the flight time of rotary wing platforms are
limited, they act in couples backing up each other
coordinated by a high level controller for backup which
is functioning in parallel with all the high level mission
controllers for rotary wing platforms. Like other high
level controllers this controller uses basic targeting and
altitude controllers as well, for directing the models to
proper targets –to a base ship or a mission point– when
necessary.

5. SOFTWARE ARCITECTURE
Following sections will introduce the structure of the
software components implemented to realize the ASW
capabilities presented in the CGF. First section explains

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

79

how a convoy of a several surface and rotary winged
platforms is established. Secondly the high level
mission controller and the low-level entity task
controllers are described with their relations. Thirdly,
rotary wing tasks explained. Lastly, we explained
sensor fusion and tactical reflexive avoidance
behaviors.

5.1. Convoy Generation, Update and Deletion
A convoy in the CGF is composed of entities of surface
platform and/or winged platforms. Firstly the main ship
of the convoy which can serve as a Leader is created or
selected in the simulation environment and then the
escort platforms are added to the convoy. All those
entities are in relation to carry out escort tasks (low
level) or convoy search and engagement missions (high
level).

 MainShip entity state repository includes the list of
the escorts which are in the convoy. The escort entity
state repository also includes the name of the mainship
entity. This relationship is heavily used in the escort
task controllers which require the mainship state as an
input. Main ship state is also a reference for related
algorithms especially leader following control.

 In order to establish a convoy through the GUI and
HLA1516, user input is transformed into interactions
and objects that is processed by the CGF. The main
interactions related with convoy generation and update
are the selection of the main ship, adding escorts with a
formation or screen mission, assigning search or
engagement tasks to the convoy. Those interactions are
first processed in the ASWCallbackHolder and
ConvoyMapCallbackHolder which forms the necessary
structure for entity tasks and controllers.

+setHVU()
+setLeader()
+generateConvoyID()
+escortFormation()
+escortScreen()
+deleteConvoy()
+detachFromConvoy()
+ungroupConvoy()

ASWCallbackHolder

+addConvoy()
+addEscortToConvoy()
+removeConvoy()
+removeEscortFromConvoy()
+getConvoyInfo()
+getEscortList()

-ConvoyInfoMap
ConvoyRepository

-MainShip
-EscortList
-ConvoyID
-MemberShipType

StateRepository

+setHVU()
+setLeader()
+escortFomation()
+escortScreen()
+deleteConvoy()
+detachFromConvoy()
+ungroupConvoy()

ConvoyMapCallbackHolder

Entity

-ScreenData
-FormationData
-SearchData
-EngagementData
-CanalData

ProcessStateRepository

+tick()

-SensorList
-ControllerList

SimulatedObject

Figure 2 - Convoy Generation Information Flow

 As you can see in the Figure 2, convoy generation
interactions include selecting a mainship (setLeader,
setHVU), adding escorts (escortFormation,
escortScreen). User can also (1) delete an existing
convoy (deleteConvoy) which deletes all of the entities
from the simulated environment or (2) ungroup the

convoy which makes all of the entities to end their
convoy task or (3) detach an escort
(detachFromConvoy) from the convoy. Interaction
includes the information of which entity to be a
leader/HVU, escort with formation and screen mission.
According to this information ASWCallbackHolder
updates the convoy identifier, and membership type of
the related simulated entity.
ConvoyMapCallbackHolder keeps all the relations of all
of the convoys existing in the simulated environment in
the Convoy Repository during runtime. Convoy sensor
fusion or similar convoy mission/task managers which
require all the entities of an existing convoy can query
from ConvoyRepository.

5.2. Convoy Mission Control Architecture
ASW subsystem of the CGF enables the user to assign a
group task to all or some of the escorts in a convoy.
User interactions about a mission to search for a hostile
subsurface entity in a specified region or a mission to
engage to a hostile subsurface entity are first processed
in the ASWCalbackHolder. The mission information
(search/engagement region, selected escorts, etc.) is
passed to the corresponding convoy task manager
derived from BaseManager. You can see the various
convoy task manager in Figure 3. BaseManager can
access to ConvoyRepository to enable the task manager
to query all of the convoys in the environment. Each
convoy task manager assign the specific task to each
escort to accomplish the convoy mission. This
relationship is visualized in Figure 4. For example for a
convoy to accomplish an engagement mission ,
ConvoyEngagementManager assign an attacker task to
one escort and engagement task to the other escorts in
the convoy which are selected to be a part of the
mission.

+tick()
-EntityMap
ObjectManager

+tick()

BaseManager

+tick()
+processInteraction()

-SearchMap
ConvoySearchManager

+tick()
+processInteraction()

-EngagementMap
ConvoyEngagementManager

+tick()
+processInteraction()

-CanalMap
ConvoyCanalManager

ConvoyRepository

Figure 3 - Convoy Mission Architecture

 ObjectManager, one of the most important classes
of the CGF, executes each sensor, component and
actuator of each entity in each simulation step. Convoy
task managers are also executed by ObjectManager in
each simulation step to handle convoy missions. The
“tick()” function is overloaded in each task manager
since it is executed in every simulation step.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

80

+convoySearch()
+convoyEngagement()
+convoyAlongCanal()

ASWCallbackHolder

+tick()
+processInteraction()

-CanalMap
ConvoyCanalManager

+tick()
+processInteraction()

-EngagementMap
ConvoyEngagementManager

+tick()
+processInteraction()

-SearchMap
ConvoySearchManager

+tick()
+process()

EngagementController

+tick()
+process()

MoveAlongCanalController

+tick()
+process()

SearchController

Entity Controller List

+tick()
+process()

AttackerController

Figure 4 - Convoy Task Controller using Entity Task
Controller

 Escort task controllers are implemented using the
existing task controller architecture to utilize the
avoidance and dynamic models already implemented in
the CGF. The relationship and the properties of the
controllers are visualized in Figure 5. BaseController
uses the CollisionAvoidance for calculating new routes
to avoid colliding with the land or the other platforms in
the environment. BaseController also executes
AuxilaryController which calculates the basic state
parameters of the platform model. Being inherited from
BaseController, entity task controllers are driving the
entity’s behavior in a convoy mission in which several
numbers of escorts are involved.

+tick()

BaseController

+tick()
+process()

MoveAlongController

+tick()
+process()

SearchController

+tick()
+process()

EngagementController

+tick()
+process()

FormationController

+tick()
+process()

ScreenController
+tick()
+process()

MoveAlongCanalController

+tick()
+process()

AttackerController

+targetAvoidance()
+landAvoidance()

CollisionAvoidance

+controlHeading()
+controlSpeed()

AuxiliaryController

Figure 5 - The relationship and the properties of the
controllers

5.3. ASW RotaryWing Tasks

The relationship and the in simulation environment
combat ships have inventory helicopters. By using
graphical interfaces, user can give screen, search or
engagement tasks to inventory helicopters. After the
task completion helicopters go back to their bases or
user can stop task and command helicopter to return its
base manually.

 When user commands a task to rotary wing entity,
graphical user interface sends the interaction to
WingedCallbackHolder. This class collects winged
entities’ callbacks. User can command screen search
task to helicopter. That interaction has the corner

points’ data of the search area. User can command a
general search task which includes more general
searching movements. After determination of the target
platform user can command an engagement to target
task. Engagement interaction includes approximate
location, approximate bearing and possible route of
target. Also torpedo attack points are passed.

 As seen in Figure 6, callback holder’s functions
pass data to ASWManager class. ASWManager, which
is inherited from BaseManager, evaluates the
interaction data and processes controllers. Rotary wing
platforms naturally exist in their ship base or land bases.
When a search or engagement task is received,
processTask runs and gives command to related
controller (ScreenController, SearchController,
EngagementController, ReturnToBaseController). If
skipTask command is received, scheduleSkipTask
method registers current timestamp. After 5 minutes of
this timestamp helicopter’s task will be stopped.
Because of the operational time limitation, most of the
helicopter tasks are paired tasks. When the flight time of
a helicopter decreases to critical values its pair is
commanded to continue the task.

 ObjectManager, which controls all objects inside
the simulation, runs its tick in every simulation step. Its
tick also runs ASWManager’s and other managers’
ticks. ASWManager’s tick checks and updates flight
times of the helicopters. When needed it creates pair by
using createPair, evaluates current task and pass current
task parameters to pair helicopter. It also checks for the
position of the new helicopter. If helicopter reaches
pair’s position, returnToBaseController runs, current
helicopter returns to base for fuelling its fuel, torpedoes
etc. Also user can stop helicopter’s search missions in
the middle of the task or delete inventory helicopter. In
this case task is deleted and helicopter will be returned
to its ship or land base.

 Although callback holder and manager classes pass
the commands, in most of the simulation time controller
classes run. For instance if the task is screen,
processTask of the ASWManager runs process method
of the ScreenController. It assigns search points and
dipping sonar depths to helicopter. After this
initialization controller’s tick runs each step. In each
tick RotaryActuator is run. Actuator makes calculations
and updates data in its state repository. State repository
has heliData, taskData and motionData. HeliData
includes helicopters name, id, pair number, current
flight time, total flight time. Task data includes detailed
task info and skip task’s timestamp. Motion data
includes linear position values, angular positions, linear
and angular velocities of helicopter. Local network
interface classes use these data and publish it to
graphical user interface for operator information. Other
controllers work similarly but their tick method
implementations differ regarding to their algorithms.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

81

+deleteInventoryHeli()
+skipTask()
+screenTask()
+searchTask()
+engagementTask()
+returnToBase()

WingedCallbackHolder

+tick()
+updateFlightTime()
+createPair()
+deletePair()
+scheduleSkipTask()
+processTask()
+processPairTask()
+cancelPairTask()

-wingedEntityMap
ASWManager

+tick()
+process()

EngagementController

+tick()
+process()

SearchController

+tick()
+process()

ScreenController

+tick()
-EntityMap
ObjectManager

+init()
+tick()

BaseManager

+tick()
+process()

ReturnToBaseController

+tick()
+updateSR()

RotaryActuator

-heliData
-taskData
-motionData

RotaryStateRepository

Figure 6 - Inventory Rotary Wings and Paired Tasks

5.4. Sensor Fusion and Tactical Reflexive Avoidance

Behaviors
In this study, each entity of a scenario owns several
sensors through which the entity may acquire detections
of an enemy entity or its torpedoes in water. With the
aid of a specific derived VR-Forces controller, namely
the avoidance controller, a surface platform can halt
performing its current task and make certain maneuvers
in order to avoid from such a detected threat.

 For entities that have been assigned in the same
group, a sensor fusion manager module obtains all the
sensor detections of these entities and inputs them to a
sensor fusion algorithm in order to calculate an
approximate location for the enemy entity or its
torpedoes. After that, an avoidance manager module
checks whether such a location has been detected for
each entity group. For entity groups with a valid enemy
detection, avoidance controllers of each entity in the
group are evoked with necessary parameters.

 Sensor fusion result for each entity group is also
published in the simulation since it can be benefitted
from while assigning certain search or engagement
tasks. Once a corresponding location approximation can
no longer be evaluated due to loss of detections in the
sensors, a special point, namely the datum point, is
displayed on the tactical screen for a predetermined
amount of time.

Sensor 1 OFF
Sensor 2 OFF
Sensor 3 ON

Sensor 1 ON
Sensor 2 ON
Sensor 3 OFF

Platform 1(Convoy 1)

P2 Result

P1 Result
Sensor 1 ON
Sensor 2 ON
Sensor 3 ON
Sensor 4 OFF

P3 Result

Sensor
Fusion

Platform 2(Convoy 1)

Platform 3(Convoy 1)

Figure 7 - Genereal Sensor Fusion Presentation

 In Figure 7, there three types of platforms belong to
same convoy (Convoy 1). Each platform has different

types of platform and some of them ON and some of
them are OFF. According their own algorithm they have
their own sensor detection results. We implemented a
algorithm that have input all platforms’ sensor detection
results (for this example, platform 1 result, platform 2
result and platform 3 result) and output sensor fusion
point.

6. SIMULATION RESULTS
In previous section we explained in detail different
types of modules we used. In this section, we illustrate
some sample result about developed modules.

 In Figure 8, we show an example those 2 platforms
given search task. Originally those platforms have
leader. Leader gives them a search task in geometrical
region. According to their assigned region platforms
first reach that region and then follow a pattern (as
shown in figure, like 8). In the middle of area there is a
region that forbidden for platforms. Each platform
knows that rule and when it comes to border that area,
otomatically escape from that area. But same time it
knows its own original tasks (searching for this
example) and finds new path to reach its search area.
For that reason, Platform 2 follows sharp path, but
Platform 1 follows smooth path. Because, Platform 1
has no overlap with with forbidden zone but Platform 2
has.

Figure 8 - Search algorithm behaviour for 2 different
platforms

In Figure 9, there are 2 different platform that

given engagement task. In normal situation platforms
have an engagement mission pattern. They first move to
related path and then they follow a pattern as shown in
figure. As we mentioned before they are convoy
members and they have communication with leader.
Leader have ability to give orders them any time in
simulation. In this example we see that Platform 1
leaves from its original path, attack target (shown as
diamond) and then come back to his original path again.

Convoys have common information that shared
among members. In this example, convoy has no sensor
detection in the beginning of simulation. After some

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

82

time someone in convoy detected a target and shared in
information pool (sensor fusion). Now, all convoy know
where target is detected. Leader might give most
suitable members to attack. So it attacks the target
(Platform 1 in figure).

Figure 9 – Engage algorithm behavior for 2 different
platforms

 Initially platforms have 0 speed. Until reaching the
related path, they increase their speed to max and then
decarease the pattern speed. Except turning bahaviours
they follow the pattern speed. But, as shown in Figure
10. Platform 1 has increased its speed to max again
because of attacker phase. After attacker phase it sets its
own pattern speed.

 Figure 10 - Speed change during simulation

7. CONCLUSION
In this paper, we explained our training based
simulation architecture and Anti-Submarine Warfare
concept. We explained in detail our software design
about ASW. We illustrate some simulation results about
our work.

 The whole design is integrated into the component
architecture of VRForces, which provides a framework
for developing Computer Generated Forces (CGF)
applications. Also, commercial toolkit independent

simulation components that specialize on algorithmic
behaviors are integrated into the commercial toolkit
based CGF and GUI applications via developing
original control architecture.

 There are lots of task that platforms have ability to
perform. While performing their original task, they
perform some reflexive behaviors such as land
avoidance, collision avoidance and step aside maneuver.
Our results represent that all single and convoy task
successfully achieved as high fidelity.

REFERENCES
VR-Forces Developer’s Guide, MAK Technologies,

2006. Chapter 2, The VRForces Simulation
Engine, Chapter 5,Creating New Components,
Chapter 10, The VR-Forces Remote Control API.

VR-Forces The Complete Simulation Toolkit. MAK
Technologies. Available from
http://www.mak.com/products/vrforces.php
[accessed 11 April 2011]

Aldogan, D., Haklidir, M., Senyurek, L., Koksal, S.,
Eroglu, O., Akdemir, C., Franko, S., Tasdelen, I.,
Akgun, S., 2009. A General Approach To High
Fidelity Modeling, Simulation and Control Of
Tactical Entities And Implementation In a
Commercial Compter Generated Forces Toolkit.
EMSS 2009

Aldogan, D., Haklidir, M., Eroglu, O., Franko, S.,
Timar. Y., Guven, A. F., Senyurek, L., Genc,
H.M., 2013. Denizaltı Savunma Harbi Modelleme
ve Simulasyonu. USMOS 2013

Haklidir, M., Aldogan, D., Tasdelen, I., 2008. High
Fidelity Modeling and Simulation of Surface
Platforms in a Computer Generated Forces
Toolkit, SUMMERSIM 2008, Edinburgh,
Scotland.

Franko, S., Koksal, S., Haklidir, M., 2009. Modeling,
Simulation And Control Of Rotary Wing Platforms
In A Computer Generated Forces Toolkit, The
Industrial Simulation Conference ISC 2009,
Loughborough, United Kingdom, 1-3 June 2009

Haklidir, M., Guven, A. F., Eroglu, O., Aldogan, D.,
Tasdelen, I., 2009. High Fidelity Modeling and
Simulation of Submarine in a Commercial
Computer Generated Forces Toolkit, The Society
for Modeling & Simulation International [SCS]
2009 Summer Computer Simulation Conference
(SCSC'09), Istanbul, Turkey, 13-16 July 2009.

Senyurek, L., Koksal, S., Genc, H.M., Aldogan, D.,
Haklidir, M., 2008. Implementation Of Fuzzy
Control For Surface Platforms In A Computer
Generated Forces Toolkit, International
Conference on Computational Intelligence for
Modelling, Control and Automation (CIMCA08),
Vienna, Austria, 10-12 December.

Pratt, D.R. (1996). Next Generation Computer
Generated Forces. Proceedings of the Sixth
Computer Generated Forces and Behavioral
Representation. s. 3-8.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

83

Koçabaş, Ş., Öztemel, E.,1998, Harp Oyunlarında
Yapay Zeka Uygulamaları TSK-MODSİM,
Modelleme ve Simülasyon Konferansı, 1-3 Nisan
1998. Kara Harp Okulu, Ankara.

Michael R. B., Henrik, S., Paul M. N., John J. L., 2010.
Nested Autonomy for Unmanned Marine Vehicles
with MOOS-IvP. Journal of Field Robotics 27(6),
834–875 (2010) Published 2010 Wiley
Periodicals, Inc.

Krishnamurthy, P., Khorrami, F., 2011. A Hierarchical
Control and Obstacle Avoidance System for
Unmanned Sea Surface Vehicles. 50th IEEE
Conference on Decision and Control and European
Control Conference (CDC-ECC), Orlando, FL,
USA, Aralık 12-15, 2011

Aveek K. D., Rafael, F., Vijay K., James P. O., John, S.,
Camillo J. T., 2002. A Vision-Based Formation
Control Framework. IEEE Transactions on
Robotic and Automation, Vol. 18, No. 5, Ekim
2002

AUTHORS BIOGRAPHY
Deniz ALDOGAN is a senior researcher in The
Scientific and Technological Research Council of
Turkey, BILGEM (TUBITAK BILGEM). She is also a
PhD student in Computer Engineering Department of
Istanbul Technical University. She received her M.S.
and B.S. degree in Computer Engineering from Middle
East Technical University. Her main areas of research
interest are modeling, simulation and artificial
intelligence. She has published several papers in these
areas.

Mehmet HAKLIDIR is a chief researcher in The
Scientific and Technological Research Council of
Turkey, BILGEM (TUBITAK BILGEM). He is also a
PhD student in Control Engineering Department of
Istanbul Technical University. He received his M.S.
degree in Mechatronics Engineering from Istanbul
Technical University and B.S. degree in Mechanical
Engineering from Istanbul University. His main areas of
research interest are modeling, simulation and control of
dynamic systems, robotics, artificial intelligence. He
has published several papers and proceedings in these
areas.

Levent SENYUREK (1975) is a systems & control
engineer, who has experience in RF systems and
training simulations. He has worked in/directed RF
system projects which aim to develop wearable
monitoring systems. He involved in simulation projects
to design control and AI models for simulated
platforms. His research interests are wearable
monitoring systems, fuzzy logic control and artificial
intelligence. He has several national and international
publications and 1 patent on these topics.

Yasemin Timar has been practicing software
engineering, presently titled as a chief researcher in The
Scientific and Technological Research Council of

Turkey, BILGEM (TUBITAK BILGEM) since 2002.
She received her B.S. degree from Computer
Engineering Department of Middle East Technical
University (METU) and M.S. degree from Computer
Engineering department of Bogazici University. She is
also a Ph.D. student in the same department. Her
research focuses on modeling and simulation
technologies, computer vision, artificial intelligence and
cognitive science. She has several proceedings and
papers published in these fields.

Semuel FRANKO is a senior researcher in The
Scientific and Technological Research Council of
Turkey, BILGEM (TUBITAK BILGEM). He is also a
PhD student in Control Engineering Department of
Istanbul Technical University. He received his M.S.
degree in System Dynamics and Control Engineering
from Istanbul Technical University and B.S. degree in
Mechanical Engineering from Istanbul University. His
main areas of research interest are modeling,
simulation, artificial intelligence and data mining.

Omer EROGLU (1983) is a senior researcher and
software developer expert in The Scientific and
Technological Research Council of Turkey, BILGEM
(TUBITAK BILGEM). He is also a PhD student in
Computer Science Engineering in Istanbul Technical
University. He received his M.S. degree in Data
Distribution Management in High Level Architecture
and B.S. degree in Computer Science Engineering from
Yildiz Technical University. His main areas of research
interest are modeling & simulation, distributed systems,
artificial intelligence, robotic and software
development.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013,
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

84

