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ABSTRACT 
Submarines, modern naval warfare scenarios, especially 
in the context of asymmetric war remain the one of the 
most important platforms. Therefore, improvement of 
Anti-Submarine Warfare (ASW) capabilities is among 
the most crucial aims of many countries. In this field, 
they reduce the cost of training, reduced the potential 
risks and to provide a variety of tactical situations to 
military training purposes can be tried for fast 
simulation applications are more preferred to use.  
 In this simulation software study, complicated 
tactical situations can be simulated in various operating 
conditions and which involves tactical entities that can 
execute ASW commands autonomously, is explained. 
Surface, submarine, rotary-wing and fixed-wing 
platforms modeled in the current simulation system. 
These target platforms are equipped with various 
sensors, weapons and acoustic countermeasure systems. 
Target platforms can realize basic tasks such as moving 
towards a waypoint or along a path as well as complex 
tasks such as searching and engagement autonomously 
both individually and in groups called as convoys. 
Additionally, they can also display reflexive behaviors 
such as land, entity or enemy/torpedo avoidance. For 
managing scenario preparation and simulating 
Computer Generated Forces (CGF), the VR-Forces 
infrastructure, a commercial application framework, has 
been customized. The capabilities of the platforms 
developed to implement the software modules are 
integrated into the architecture of this infrastructure 
component CGF simulation engine. Results represent 
that platforms exhibit realistic behavior even in difficult 
conditions. 

 
Keywords: Anti-Submarine Warfare, Modeling, 
Simulation, Virtual Forces 

 
1. INTRODUCTION 
In high-fidelity simulations, one of the most critical 
tasks that can be assigned to a simulation component is 
the modeling and simulation of different platforms. To 
provide high-fidelity, both realistic models and realistic 
controls should be employed for realizing the behavior 
of computer generated forces (CGF) in simulation. In 
addition to CGF capabilities, tactical simulations mostly 

require a scenario preparation application. Distributed 
simulation frameworks provide collaboration of  
different types of modules that have their own 
complicated modeling and algorithm mechanisms. We 
used a commercial simulation framework for this goal. 
This framework provides some basic abilities to all 
system; nevertheless, it is not possible to satisfy all 
necessities.  
 In this study, we shortly explain framework we 
used and modules that we integrated into that 
framework. Platforms we used have complex equations 
of motion and speed control, as well as they have 
various tasks such as move-to, search, engage. While 
performing main tasks platforms use fuzzy controller, 
land and other realistic targets avoidance behavior 
controller. Besides basic types of tasks we have convoy 
mechanism that we explained below. By the help of 
convoy mechanism platforms perform more complex 
tasks and act together in different situations. We 
designed and implemented our complex modules in 
different way and integrated them to main framework. 
Hereby, reusability and flexibility of software is 
achieved.  
 The software modules for the motion models, 
sensors, weapons and the fuzzy controllers belonging to 
platforms have been implemented in the C++ 
programming language and have been integrated to the 
component architecture of VR-Forces CGF application 
(VR-Forces back-end) as composite objects (VR-Forces 
Developer’s Guide, 2006 ; VR-Forces The Complete 
Simulation Toolkit, accessed 2011 ). In addition to this, 
convoy mechanism and other complex task modules 
also implemented as separate modules and integrated to 
main software.  
 The remainder of this article is organized as 
follows. We briefly explain our main framework in 
section 2. In section 3, we explained artificial 
intelligence and tactical environment simulation. In 
section 4, we describe our main focus on convoy 
mechanisms and how to work complicated modules. In 
section 5, we explained our software design in detail. 
We illustrate some simulation results in section 6. 
Finally, section 7 concludes the article. 
 

Proceedings of the International Defense and Homeland Security Simulation Workshop 2013, 
ISBN 978-88-97999-21-8; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

77

mailto:mail@uni.edu
mailto:mail@uni.edu


2. GENERAL SIMULATION ARCHITECTURE  
In this study, movement models that take into account 
the environmental conditions (wave, current, wind, 
season, day and night difference) and hydrodynamic 
forces have been developed for surface, submarine and 
rotary wing platforms each with 6 degrees of freedom. 
The motion of all platforms is considered in 6 degrees 
of freedom since six independent coordinates are 
necessary to calculate state information of a rigid body. 
We explained in detail our previous work (Haklidir, 
Aldogan and Tasdelen, 2008; Franko, Koksal and 
Haklidir, 2009; Haklidir, Guven, Eroglu, Aldogan and 
Tasdelen, 2009) 
 Simulation architecture of VR-Forces, which is 
basically a commercial product being used in 
architecture, originally developed controllers and 
modules are integrated into this architecture.VR-Forces 
mainly have two main modules that are listed as back-
end and front-end side. Front-end side provides 
management of scenario and simulation execution 
control. On the other hand, back-end side provides 
modeling and simulation of entities, controlling remote 
control entities, management of local entities’ plan and 
all other issues such as task, set. 

According to design of VR-Forces, each entity has 
three types of components: sensors, controllers and 
actuators. Sensors, allows you to retrieve information 
about the environment around the object. Controllers, 
receive information about assigned task and lead object 
for task. Actuators, organize task information, run 
motion model regularly and update objects’ information 
such as speed, location. Commercial toolkit 
independent controllers are used to simulate 
quartermasters of the surface platforms. A flexible 
fuzzy logic that capable of simulating human expert 
behavior has been implemented. Fuzzy logic 
controllers, which are in fact heading and speed 
controllers that utilize fuzzy logic for their calculations, 
are implemented in conjunction with land avoidance 
calculations (Senyurek, Koksal, Genc, Aldogan and 
Haklidir, 2008). 

Sensors have very important roles while platforms 
performing their task and making decisions. Each 
sensor component have been developed and integrated 
as a separate software module. Developing every 
advanced feature to be integrated into the entity 
behaviors as commercial toolkit independent software 
modules has been adopted throughout the realization of 
our system to maintain modularity and reusability. For 
further investigation, the reader can refer to our 
previous work (Aldogan, Haklidir, Senyurek, Koksal, 
Eroglu, Akdemir, Franko, Tasdelen and Akgun, 2009).  

 
 

3. TACTICAL ENVIRONMENT SIMULATION 
AND ARTIFICIAL INTELLIGENCE 

Utilization of modeling and simulation technologies in 
military areas is observed more frequently specifically 
on training and analysis applications. Creation of the 
tactical environment via Computer Generated Forces 

(CGF) and construction of war space with sensor and 
weapon capabilities of the entities in this environment 
has been seriously dealt with since 1980’s and has come 
along crucial improvement processes up to now (Pratt, 
1996; Kocabas and Oztemel, 1998).  

 The development of CGF can be analyzed in 5 
subsequent phases. First generation CGF realizes 
scenarios simply without using behavior models. 
Second generation systems execute simple behavior 
models. Routes and roads are determined by the user 
before or during scenario run while interactions can 
only be on these structures. Third generation systems 
apply tasks which are composed of previously planned, 
rule or state based modules. In such systems, there is a 
hierarchy mechanism between tasks. Furthermore, these 
tasks can be applied in parallel or sequentially to form 
other complex tasks and behaviors. Fourth generation 
systems possess autonomous command control 
processes over advanced third generation systems. Fifth 
generation systems have capabilities such as goal 
selection or learning (Aldogan, Haklidir, Eroglu, 
Franko, Timar, Guven, Senyurek, Genc, 2013). 

 The system implemented in this study has abilities 
of a third generation system. The user is the decision 
mechanism in command control processes except a few 
reflexive situations (land avoidance, target avoidance, 
etc.).  The user can decide on issues such as which 
entities will take place in a specific scenario, which 
capabilities and parameters the sensors and weapons of 
the entities will have or on which areas, roads or routes 
the task will be carried out. These decisions can be 
made before or during simulation run. Once decisions 
have been made, tasks are performed autonomously in 
accordance with the chosen task parameters and 
behavior models.   
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Figure 1 - Task and Behavior Hierarchy 
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 Behaviors have been placed in task frames and 
these frames have been placed in other task frames. 
Therefore, main goals have been comprised of a task 
hierarchy. In this way, it is aimed to facilitate the 
construction of complex tasks and behaviors. The 
corresponding hierarchy is given in Figure 1. 

 

4. ANTI-SUBMARINE WARFARE (ASW) 
CAPABILITY 
 

4.1. Preferred Architecture and Basic Components 
for Implementing ASW Skills 

A proper tactical training simulator should provide 
realistic target behaviour. Therefore ASW capability for 
marine ships and rotary wing platforms should be 
integrated into corresponding Artificial Intelligence 
(AI) models used in the training simulation.  

As part of our work, requirements of ASW 
publications are surveyed for defining proper tactical 
behavior. Then, a set of basic actions are determined for 
developing a limited number of corresponding low level 
controllers which are used as building blocks to 
construct different complex tactical actions.  

As a result, autonomous ASW capability of 
platform models is implemented considering an 
hierarchical behavior-based control architecture as in 
several other approaches in the literature (Michael, 
Henrik, Paul and John 2010; Krishnamurthy and 
Khorrami 2011; Aveek, Rafael, Vijay, James, John and 
Camillo 2002).  

It is critical to properly determine the afore- 
mentioned basic/low level controllers to simplify the 
construction of complex behaviors. In our work we 
determined these controllers as a leader following 
controller. Speed controller for marine ships. For rotary 
platforms, leader following was unnecessary while an 
extra altitude controller was needed. These basic/low 
level controllers are constructed as fuzzy logic 
controllers for marine ships and as Linear Quadratic 
Regulator (LQR) controllers for rotary platforms. They 
all consist of separate components for speed and 
direction control.  

For realistic response, land avoidance and conflict 
prevention behaviors for marine ships are also 
integrated into these basic actions. Land avoidance 
works in parallel with leader following and targeting 
behavior, as it controls the speed and direction of the 
models together with these controllers in a weighted 
manner. On the other hand, conflict prevention takes 
full control when necessary. 

 
4.2. Constructing Complex Tactical ASW 

Capabilities 
ASW tactics are applied by groups of platforms (marine 
ships and rotary wing platforms), which are called as 
convoys in these study. 

Basic ASW behavior for a convoy is cruising in 
formation. For implementing such an action, convoy 
marine ships just apply the afore mentioned (low level) 

leader following control permanently. Both marine 
ships and rotary wing platforms might also be given 
screening duties, which is accomplished through (low 
level) targeting controllers. This time, for effective 
screening, several random target points inside a 
predetermined screen area are assigned to the 
corresponding models and each point is targeted one 
after another which is coordinated through high level 
screen controllers producing a realistic screening action. 

Within the scope of ASW, applications of a search 
mission have similarities to convoy cruising. Searching 
is mainly cruising in an area with activated sensors, 
applying some special maneuvers if necessary.  Again, 
each target model is assigned a set of target points 
which are visited in a specific order determined by high 
level search controllers. For accomplishing parallel 
search mission –another ASW search method– on the 
other hand, platforms apply targeting control for 
reaching their starting points in the first phase, while in 
the second phase they cruise parallel to each other 
exploiting basic formation control.  

Similarly, for accomplishing convoy obstacle pass, 
basic behaviors are serialized in different phases. In the 
first phase each platform visits the canal points one by 
one while in the second phase they shift back to 
formation control.  

Note that, applying leader following formation 
control does not necessarily need a leader platform to be 
determined. To accomplish most of the ASW tactics, 
imaginary leaders are created for more stable action, 
following similar works in the literature.  

Attack missions have an additional attack phase in 
which platforms maneuver for assuring right conditions 
for weapon firing before firing their torpedoes’. This is 
also accomplished through basic targeting and altitude 
controllers. 
 
4.3. Some Additional Information about Rotary 

Wing Platform Models Applying ASW 
Rotary wing platform models, when arrived to a target 
point, hover at that point at a specified altitude and 
investigate their neighborhood via dipping sonar –
which in our work is modeled as another mechanical 
element controlled by a separate controller applying the 
mission specific orders of the corresponding high level 
mission controller. 

Since the flight time of rotary wing platforms are 
limited, they act in couples backing up each other 
coordinated by a high level controller for backup which 
is functioning in parallel with all the high level mission 
controllers for rotary wing platforms. Like other high 
level controllers this controller uses basic targeting and 
altitude controllers as well, for directing the models to 
proper targets –to a base ship or a mission point– when 
necessary. 

 
5. SOFTWARE ARCITECTURE 
Following sections will introduce the structure of the 
software components implemented to realize the ASW 
capabilities presented in the CGF. First section explains 
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how a convoy of a several surface and rotary winged 
platforms is established. Secondly the high level 
mission controller and the low-level entity task 
controllers are described with their relations. Thirdly, 
rotary wing tasks explained. Lastly, we explained 
sensor fusion and tactical reflexive avoidance 
behaviors.   

 

5.1.  Convoy Generation, Update and Deletion 
A convoy in the CGF is composed of entities of surface 
platform and/or winged platforms. Firstly the main ship 
of the convoy which can serve as a Leader is created or 
selected in the simulation environment and then the 
escort platforms are added to the convoy. All those 
entities are in relation to carry out escort tasks (low 
level) or convoy search and engagement missions (high 
level). 

 MainShip entity state repository includes the list of 
the escorts which are in the convoy. The escort entity 
state repository also includes the name of the mainship 
entity. This relationship is heavily used in the escort 
task controllers which require the mainship state as an 
input. Main ship state is also a reference for related 
algorithms especially leader following control.  

 In order to establish a convoy through the GUI and 
HLA1516, user input is transformed into interactions 
and objects that is processed by the CGF. The main 
interactions related with convoy generation and update  
are  the selection of the main ship, adding escorts with a 
formation or screen mission, assigning search or 
engagement tasks to the convoy. Those interactions are 
first processed in the ASWCallbackHolder and 
ConvoyMapCallbackHolder which forms the necessary 
structure for entity tasks and controllers. 

  

+setHVU()
+setLeader()
+generateConvoyID()
+escortFormation()
+escortScreen()
+deleteConvoy()
+detachFromConvoy()
+ungroupConvoy()

ASWCallbackHolder

+addConvoy()
+addEscortToConvoy()
+removeConvoy()
+removeEscortFromConvoy()
+getConvoyInfo()
+getEscortList()

-ConvoyInfoMap
ConvoyRepository

-MainShip
-EscortList
-ConvoyID
-MemberShipType

StateRepository

+setHVU()
+setLeader()
+escortFomation()
+escortScreen()
+deleteConvoy()
+detachFromConvoy()
+ungroupConvoy()

ConvoyMapCallbackHolder

Entity

-ScreenData
-FormationData
-SearchData
-EngagementData
-CanalData

ProcessStateRepository

+tick()

-SensorList
-ControllerList

SimulatedObject

 
Figure 2 - Convoy Generation Information Flow 
 

 As you can see in the Figure 2, convoy generation 
interactions include selecting a mainship (setLeader, 
setHVU), adding escorts (escortFormation, 
escortScreen).  User can also (1) delete an existing 
convoy (deleteConvoy) which deletes all of the entities 
from the simulated environment or (2) ungroup the 

convoy which makes all of the entities to end their 
convoy task or (3) detach an escort 
(detachFromConvoy) from the convoy. Interaction 
includes the information of which entity to be a 
leader/HVU, escort with formation and screen mission. 
According to this information ASWCallbackHolder 
updates the convoy identifier, and membership type of 
the related simulated entity.  
ConvoyMapCallbackHolder keeps all the relations of all 
of the convoys existing in the simulated environment in 
the Convoy Repository during runtime. Convoy sensor 
fusion or similar convoy mission/task managers which 
require all the entities of an existing convoy can query 
from ConvoyRepository. 

 
5.2. Convoy Mission Control Architecture 
ASW subsystem of the CGF enables the user to assign a 
group task to all or some of the escorts in a convoy.  
User interactions about a mission to search for a hostile 
subsurface entity in a specified region or a mission to 
engage to a hostile subsurface entity are first processed 
in the ASWCalbackHolder. The mission information 
(search/engagement region, selected escorts, etc.) is 
passed to the corresponding convoy task manager 
derived from BaseManager. You can see the various 
convoy task manager in Figure 3.  BaseManager can 
access to ConvoyRepository to enable the task manager 
to query all of the convoys in the environment. Each 
convoy task manager assign the specific task to each 
escort to accomplish the convoy mission. This 
relationship is visualized in Figure 4. For example for a 
convoy to accomplish an engagement mission , 
ConvoyEngagementManager assign an attacker task to 
one escort and engagement task to the other escorts  in 
the convoy which are selected to be a part of the 
mission. 
 

+tick()
-EntityMap
ObjectManager

+tick()

BaseManager

+tick()
+processInteraction()

-SearchMap
ConvoySearchManager

+tick()
+processInteraction()

-EngagementMap
ConvoyEngagementManager

+tick()
+processInteraction()

-CanalMap
ConvoyCanalManager

ConvoyRepository

 
Figure 3 - Convoy Mission Architecture 

 
 ObjectManager, one of the most important classes 
of the CGF, executes each sensor, component and 
actuator of each entity in each simulation step. Convoy 
task managers are also executed by ObjectManager in 
each simulation step to handle convoy missions. The 
“tick()” function is overloaded in each task manager 
since it is executed in every simulation step. 
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+convoySearch()
+convoyEngagement()
+convoyAlongCanal()

ASWCallbackHolder

+tick()
+processInteraction()

-CanalMap
ConvoyCanalManager

+tick()
+processInteraction()

-EngagementMap
ConvoyEngagementManager

+tick()
+processInteraction()

-SearchMap
ConvoySearchManager

+tick()
+process()

EngagementController

+tick()
+process()

MoveAlongCanalController

+tick()
+process()

SearchController

Entity Controller List

+tick()
+process()

AttackerController

 
Figure 4 - Convoy Task Controller using Entity Task 
Controller 
 
 Escort task controllers are implemented using the 
existing task controller architecture to utilize the 
avoidance and dynamic models already implemented in 
the CGF. The relationship and the properties of the 
controllers are visualized in Figure 5. BaseController 
uses the CollisionAvoidance for calculating new routes 
to avoid colliding with the land or the other platforms in 
the environment. BaseController also executes 
AuxilaryController which calculates the basic state 
parameters of the platform model. Being inherited from 
BaseController, entity task controllers are driving the 
entity’s behavior in a convoy mission in which several 
numbers of escorts are involved. 
 

+tick()

BaseController

+tick()
+process()

MoveAlongController

+tick()
+process()

SearchController

+tick()
+process()

EngagementController

+tick()
+process()

FormationController

+tick()
+process()

ScreenController
+tick()
+process()

MoveAlongCanalController

+tick()
+process()

AttackerController

+targetAvoidance()
+landAvoidance()

CollisionAvoidance

+controlHeading()
+controlSpeed()

AuxiliaryController

 
Figure 5 - The relationship and the properties of the 
controllers 

 
5.3. ASW RotaryWing Tasks 

 
The relationship and the in simulation environment 
combat ships have inventory helicopters. By using 
graphical interfaces, user can give screen, search or 
engagement tasks to inventory helicopters. After the 
task completion helicopters go back to their bases or 
user can stop task and command helicopter to return its 
base manually. 

 When user commands a task to rotary wing entity, 
graphical user interface sends the interaction to 
WingedCallbackHolder. This class collects winged 
entities’ callbacks. User can command screen search 
task to helicopter. That interaction has the corner 

points’ data of the search area. User can command a 
general search task which includes more general 
searching movements. After determination of the target 
platform user can command an engagement to target 
task. Engagement interaction includes approximate 
location, approximate bearing and possible route of 
target. Also torpedo attack points are passed. 

 As seen in Figure 6, callback holder’s functions 
pass data to ASWManager class. ASWManager, which 
is inherited from BaseManager, evaluates the 
interaction data and processes controllers. Rotary wing 
platforms naturally exist in their ship base or land bases. 
When a search or engagement task is received, 
processTask runs and gives command to related 
controller (ScreenController, SearchController, 
EngagementController, ReturnToBaseController). If 
skipTask command is received, scheduleSkipTask 
method registers current timestamp. After 5 minutes of 
this timestamp helicopter’s task will be stopped. 
Because of the operational time limitation, most of the 
helicopter tasks are paired tasks. When the flight time of 
a helicopter decreases to critical values its pair is 
commanded to continue the task. 

 ObjectManager, which controls all objects inside 
the simulation, runs its tick in every simulation step. Its 
tick also runs ASWManager’s and other managers’ 
ticks. ASWManager’s tick checks and updates flight 
times of the helicopters. When needed it creates pair by 
using createPair, evaluates current task and pass current 
task parameters to pair helicopter. It also checks for the 
position of the new helicopter. If helicopter reaches 
pair’s position, returnToBaseController runs, current 
helicopter returns to base for fuelling its fuel, torpedoes 
etc. Also user can stop helicopter’s search missions in 
the middle of the task or delete inventory helicopter. In 
this case task is deleted and helicopter will be returned 
to its ship or land base. 

 Although callback holder and manager classes pass 
the commands, in most of the simulation time controller 
classes run. For instance if the task is screen, 
processTask of the ASWManager runs process method 
of the ScreenController. It assigns search points and 
dipping sonar depths to helicopter. After this 
initialization controller’s tick runs each step. In each 
tick RotaryActuator is run. Actuator makes calculations 
and updates data in its state repository. State repository 
has heliData, taskData and motionData. HeliData 
includes helicopters name, id, pair number, current 
flight time, total flight time. Task data includes detailed 
task info and skip task’s timestamp. Motion data 
includes linear position values, angular positions, linear 
and angular velocities of helicopter. Local network 
interface classes use these data and publish it to 
graphical user interface for operator information. Other 
controllers work similarly but their tick method 
implementations differ regarding to their algorithms. 
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+deleteInventoryHeli()
+skipTask()
+screenTask()
+searchTask()
+engagementTask()
+returnToBase()

WingedCallbackHolder

+tick()
+updateFlightTime()
+createPair()
+deletePair()
+scheduleSkipTask()
+processTask()
+processPairTask()
+cancelPairTask()

-wingedEntityMap
ASWManager

+tick()
+process()

EngagementController

+tick()
+process()

SearchController

+tick()
+process()

ScreenController

+tick()
-EntityMap
ObjectManager

+init()
+tick()

BaseManager

+tick()
+process()

ReturnToBaseController

+tick()
+updateSR()

RotaryActuator

-heliData
-taskData
-motionData

RotaryStateRepository

 
Figure 6 - Inventory Rotary Wings and Paired Tasks 

 
5.4. Sensor Fusion and Tactical Reflexive Avoidance 

Behaviors 
In this study, each entity of a scenario owns several 
sensors through which the entity may acquire detections 
of an enemy entity or its torpedoes in water. With the 
aid of a specific derived VR-Forces controller, namely 
the avoidance controller, a surface platform can halt 
performing its current task and make certain maneuvers 
in order to avoid from such a detected threat.   

 For entities that have been assigned in the same 
group,  a sensor fusion manager module obtains all the 
sensor detections of these entities and inputs them to a 
sensor fusion algorithm in order to calculate an 
approximate location for the enemy entity or its 
torpedoes. After that, an avoidance manager module 
checks whether such a location has been detected for 
each entity group. For entity groups with a valid enemy 
detection, avoidance controllers of each entity in the 
group are evoked with necessary parameters. 

 Sensor fusion result for each entity group is also 
published in the simulation since it can be benefitted 
from while assigning certain search or engagement 
tasks. Once a corresponding location approximation can 
no longer be evaluated due to loss of detections in the 
sensors, a special point, namely the datum point, is 
displayed on the tactical screen for a predetermined 
amount of time.   

Sensor 1 OFF
Sensor 2 OFF
Sensor 3 ON

Sensor 1 ON
Sensor 2 ON
Sensor 3 OFF

Platform 1(Convoy 1)

P2 Result

P1 Result
Sensor 1 ON
Sensor 2 ON
Sensor 3 ON
Sensor 4 OFF

P3 Result

Sensor 
Fusion

Platform 2(Convoy 1)

Platform 3(Convoy 1)

 
Figure 7 - Genereal Sensor Fusion Presentation 
 

 In Figure 7, there three types of platforms belong to 
same convoy (Convoy 1). Each platform has different 

types of platform and some of them ON and some of 
them are OFF. According their own algorithm they have 
their own sensor detection results. We implemented a 
algorithm that have input all platforms’ sensor detection 
results (for this example, platform 1 result, platform 2 
result and platform 3 result) and output sensor fusion 
point. 

 
6. SIMULATION RESULTS 
In previous section we explained in detail different 
types of modules we used. In this section, we illustrate 
some sample result about developed modules. 

 In Figure 8, we show an example those 2 platforms 
given search task. Originally those platforms have 
leader. Leader gives them a search task in geometrical 
region. According to their assigned region platforms 
first reach that region and then follow a pattern (as 
shown in figure, like 8). In the middle of area there is a 
region that forbidden for platforms. Each platform 
knows that rule and when it comes to border that area, 
otomatically escape from that area. But same time it 
knows its own original tasks (searching for this 
example) and finds new path to reach its search area. 
For that reason, Platform 2 follows sharp path, but 
Platform 1 follows smooth path. Because, Platform 1 
has no overlap with with forbidden zone but Platform 2 
has. 

 
 

Figure 8 - Search algorithm behaviour for 2 different 
platforms 

 
In Figure 9, there are 2 different platform that 

given engagement task. In normal situation platforms 
have an engagement mission pattern. They first move to 
related path and then they follow a pattern as shown in 
figure. As we mentioned before they are convoy 
members and they have communication with leader. 
Leader have ability to give orders them any time in 
simulation. In this example we see that Platform 1 
leaves from its original path, attack target (shown as 
diamond) and then come back to his original path again.  

Convoys have common information that shared 
among members. In this example, convoy has no sensor 
detection in the beginning of simulation. After some 
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time someone in convoy detected a target and shared in 
information pool (sensor fusion). Now, all convoy know 
where target is detected. Leader might give most 
suitable members to attack. So it attacks the target 
(Platform 1 in figure). 

 

 
Figure 9 – Engage algorithm behavior for 2 different 
platforms 
 
 Initially platforms have 0 speed. Until reaching the 
related path, they increase their speed to max and then 
decarease the pattern speed. Except turning bahaviours 
they follow the pattern speed. But, as shown in Figure 
10. Platform 1 has increased its speed to max again 
because of attacker phase. After attacker phase it sets its 
own pattern speed. 
 

 
 Figure 10 - Speed change during simulation 
 

 
7. CONCLUSION 
In this paper, we explained our training based 
simulation architecture and Anti-Submarine Warfare 
concept. We explained in detail our software design 
about ASW. We illustrate some simulation results about 
our work. 

 The whole design is integrated into the component 
architecture of VRForces, which provides a framework 
for developing Computer Generated Forces (CGF) 
applications. Also, commercial toolkit independent 

simulation components that specialize on algorithmic 
behaviors are integrated into the commercial toolkit 
based CGF and GUI applications via developing 
original control architecture. 

 There are lots of task that platforms have ability to 
perform. While performing their original task, they 
perform some reflexive behaviors such as land 
avoidance, collision avoidance and step aside maneuver. 
Our results represent that all single and convoy task 
successfully achieved as high fidelity. 
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