
THE USE OF ARTIFICIAL INTELLIGENCE FOR ENHANCED NETWORK DEFENSE

Michael Knight(a), Kortney Raulston(b), Kennard Laviers(c), Kenneth Hopkinson(d)

(a)(b)(c)(d)Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH 45433-7765

(a)Michael.knight@afit.edu, (b)kortney.raulston@afit.edu, (c)Kennard.laviers@afit.edu, (d) kenneth.hopkinson@afit.edu

ABSTRACT
Even after a network intrusion system (IDS) has
identified a cyber-attack, network administrators are
still faced with the difficult challenge of assessing
network health and status in order to appropriately take
action to mitigate damage caused by such an attack due
to the large amount of data available from the network
components. This paper explores the use of auto-
clustering to abstract network meta-data to form high-
level units of information that are more comprehensible
for a network administrator or an AI Agent to
understand and act on. We perform an empirical
analysis to evaluate our approach using the NSL-
KDD99 dataset for both abstraction of network log data
and attack family classification. By auto-clustering, we
significantly increase the classification speed without
greatly increasing the error.

Keywords: Classification, KDD99, IDS, C4.5, K-Means

DISCLAIMER
The views expressed in this document are those of the
authors and do not reflect the official policy or position
of the United States Air Force, Department of Defense,
or the U.S. Government.

1. INTRODUCTION
A significant problem with computer networks today is
the ability to defend against cyber-attacks in real-time.
Defending attacks becomes more difficult when there
are an overwhelming amount of network features and
samples to analyze. The goal of this research is to detect
an attack and formulate a plan to counter the attack as it
is happening. The primary focus of this paper will be on
the detection portion of the problem. Without the
detection of a cyber-attack, the process to create and
carry out a plan to mitigate its effects cannot be
developed. This plan should include information about
the type of attack that is likely occurring in order to
produce a set of actions or procedures to combat it. By
clustering and classifying network traffic, personnel or
monitoring agents can more easily determine if the
traffic is originating from an attack or otherwise normal
activity. This classifier can be trained on a given
network to determine what normal traffic is.
Furthermore, if significant features are highlighted
before the classifier is created, some of the complexity

can be reduced so attacks can be detected more easily.
Clustering is the grouping of similar data items into
clusters (Fung 2001). In this application, clustering is
performed on the individual features of the network
trace data so that the important/common features of
attack strategies can be highlighted. The data set used is
the well-known KDD 99 which is network data
produced from a simulated Air Force network
experiencing different forms of network attacks. WEKA
is a software workbench design to support the
application of machine learning technology to real
world data sets (Garner 1995). WEKA is useful because
of its versatility in allowing data to be presented in its
own format, such as the KDD 99 data set, and it is
designed to encompass all learning algorithms under a
common interface. The algorithms used for this research
are ReliefF, clustering by K-Means, and C4.5.

2. RELATED WORK
There has been a great deal of research in the area of
learning feature representations from unlabeled data sets
for high-level tasks such as classification. Much of this
research has shown great progress on benchmark data
sets like NORB and CIFAR by making use of complex
unsupervised learning algorithms (Coates, Lee, and Ng
2011).

The WEKA system is traditionally used with
agricultural data sets and these data sets tend to be
larger and of lesser quality than those in machine
learning data sets (Garner 1995). Applying the WEKA
system to machine learning data sets allows us to
answer questions like “Do these changes in certain
features indicate a cyber attack?” as well as gain some
insight into how to apply learning algorithms to existing
real world data sets.

Previously, the classification of network traffic
was performed through the use of port-based or
payload-based analysis. This has become increasingly
more difficult as peer-to-peer networks (P2P) adapt to
using dynamic port numbers, masquerading techniques,
and encryption to avoid detection (Erman, Arlitt, and
Manhanti 2006). To combat these cyber-attack
adaptations, an alternative approach for classifying
network traffic is introduced by exploiting and
extracting common or distinct attack strategy
characteristics.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

73

Authors of another related paper (McGregor, Hall,
Lorier, and Brunskill 2004) describe their efforts using
the Expectation Maximization (EM) algorithm to cluster
network flows into different application types with a
fixed set of attributes (features). The EM algorithm
separates the network traffic into a few basic classes but
the accuracy and quality of the clustering is limited due
to nature of its fixed attributes. Another technique uses
the sequential forward selection (SFS) algorithm
(Zander, Nguyen, and Armitage 2005) to find the best
feature set to avoid an expensive, exhaustive search.
Some other data sets, similar to KDD 99, used with the
SFS feature selection algorithm include the Auckland-
VI, NZIXII and Leipzig-II traces.

This paper will use the popular and well-known
KDD 99 data set for experimentation and evaluation
purposes. A modification of the Relief algorithm is used
for feature selection and clustering is performed via the
K-means algorithm. Additionally, the C4.5 algorithm is
used to build a decision tree based on the feature
selection results.

3. METHOD

3.1. Data Set
The data set that is used to evaluate the approach
introduced in this article is the KDD99 data set. This
data set was introduced for the 1999 KDD Cup
challenge to accurately classify network data to a given
class of attack or normal traffic (KDD Cup 1999). The
data set consists of both normal and attack traffic
classes, with the attack classes making up the majority
of the cases. In total, there are 23 classes and 41
features in the original KDD99 data set (Tavallaee,
Bagheri, Lu, and Ghorbani 2009). Later, this data set
was transformed into to NSL-KDD99 which solved
some issues regarding redundant samples and the over
training of classifiers. Dimensions of this data set
include measures such as the protocol type, service,
server error rates, and byte counts. The values types in
the data are nominal, discrete, and real. Attack types
include back dos, buffer_overflow u2r, ftp_writer2l,
guess_passwd r2l, imap r2l, ipsweep probe, land dos,
loadmodule u2r, multihop r2l, neptune dos, nmap probe,
perl u2r, phf r2l, pod dos, portsweep probe, rootkit u2r,
satan probe, smurf dos, spy r2l, teardrop dos,
warezclient r2l, and warezmaster r2l.
 Table 1 shows the breakdown of the sample sizes
per class in the NSL-KDD99 data set. In this article,
only classes with 20 or more samples will be considered
due to the difficulty that classifiers have in
distinguishing between small sample sizes because they
cannot be easily trained to do so. After this
modification, there are 14 classes to process and
125,901 samples in all. This is a relatively small
decrease as the original sample size was 125,973.

3.2. Feature Selection
Before a classifier is created, only the NSL-KDD99
data set’s significant features will be selected. The goal

here is to reduce the number of features to be classified
so that there are fewer features to process and yet the
accuracy is not diminished too greatly. The ReliefF
algorithm (Garner 1995) was used to select the best data
set features for use by the classifier.

The Relief algorithm, shown in Algorithm 1, is the
original algorithm that ReliefF is built upon. The Relief
algorithm requires an input n for the number of
instances to randomly select and updates the weight
values associated with each feature based on choosing
the two nearest neighbors. One of these two nearest
neighbors is selected inside the class of the randomly
selected instance while the other is the nearest outside
the class. The ReliefF algorithm slightly modifies the
original Relief algorithm by using the nearest k
neighbors, where k is specified as an input, in and
outside the class. Instead of choosing one nearest
neighbor, it chooses k neighbors. This modification
reduces the number of random selections of instances
needed. ReliefF also allows for any number of classes.

Table 1: Number of Samples, NSL-KDD99 Classes

Item Type Count

1 normal 67343
2 neptune 41214

3 werezclient 890

4 ipsweep 3599

5 portsweep 2931

6 teardrop 892

7 nmap 1493

8 satan 3633

9 smurf 2646

10 pod 201

11 back 956

12 guess_passwd 53

13 ftp_write 8

14 multihop 7

15 rootkit 10

16 buffer_overflow 30

17 imap 11

18 warezmaster 20

19 phf 4

20 land 18

21 loadmodule 9

22 spy 2

23 perl 3

 The Relief algorithm, shown in Algorithm 1, is the
original algorithm that ReliefF is built upon. The Relief
algorithm requires an input n for the number of
instances to randomly select and updates the weight
values associated with each feature based on choosing
the two nearest neighbors. One of these two nearest
neighbors is selected inside the class of the randomly

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

74

selected instance while the other is the nearest outside
the class. The ReliefF algorithm slightly modifies the
original Relief algorithm by using the nearest k
neighbors, where k is specified as an input, in and
outside the class. Instead of choosing one nearest
neighbor, it chooses k neighbors. This modification
reduces the number of random selections of instances
needed. ReliefF also allows for any number of classes.

set all weights W[A]:=0.0
for i ← 1 to n do
 begin
 select instance of R randomly
 H ← nearest hit
 M ← nearest miss
 for A ← 1 to cardinality(all_attributes) do
 W[A]←W[A]–diff(A,R,H)/n + diff(A,R,M)/n
 end

Algorithm 1: Relief Algorithm Pseudocode
(Kononenko, Simec, and Edvard 1995)

 The primary parameters in WEKA for the ReliefF
algorithm are the number of neighbors and the number
of instances. The number of neighbors parameter is
used to select a given number of neighbors to search in
the algorithm. The neighbors include those samples in
the randomly selected sample’s class as well as the
nearest neighbors in the other classes. Because of this,
the parameter has to be carefully selected so the number
does not go below the smallest total from amongst the
classes. The number of instances parameter defines the
number of instances to select. In each instance, a
random sample is selected and the ReliefF algorithm
updates the weights of each feature. The weights are
similar to a scoring feature used to rank the best features
and updated according to the equation in Equation 1.







)(

))](,,()([),,(
][:][

RclassC n

CMRAdiffCP

n

HRAdiff
AWAW (1)

 Equation 1 is the ReliefF weight update equation.
Please refer to (Kononenko, Simec, and Edvard 1995)
for a full description of this derivation.
 In feature selection, a greater number of instances
will produce the most accurate weights due to the fact
that they will approach their steady state values after
enough random samples are selected. After the features
are selected, a classifier will be built using those
features.

3.3. Classification
The data is broken up using a 10-fold validation to test
the accuracy of the proposed classification method. The
classification was performed with clustering using both
the K-Means (MacQueen 1967) and C4.5 algorithms.
The K-means algorithm is built upon a very simple
foundation: Given a set of initial clusters, assign each
point to one of them and each centroid of the cluster is
replaced by the mean point on their respective cluster
(Fung 2001).

 The pseudocode for the K-Means algorithm is
shown below (MacQueen 1967):

1. Place K points into the space represented by the
objects that are being clustered. These points represent
initial group centroids.
2. Assign each object to the group that has the closest
centroid.
3. When all objects have been assigned, recalculate
the positions of the K centroids.
4. Repeat Steps 2 and 3 until the centroids no longer
move. This produces a separation of the objects into
groups from which the metric to be minimized can be
calculated.

 The K-Means classifier is chosen for this
application due to its ease of implementation. The
number of clusters to be chosen is based on the number
of classes in the data set. The goal is to have each class
mapped to a cluster using the best features selected by
the ReliefF analysis. The trained classifier will then
classify a set of test samples and the accuracy will be
measured.
 Pseudocode for the C4.5 algorithm (Quinlan 1993),
also known as J48 in the open source Java
implementation in WEKA, is shown below (Kotsiantis
2007):

1. Check for base cases
2. For each attribute a, find the normalized
information gain from splitting on a
3. Let a_best be the attribute with the highest
normalized information gain
4. Create a decision node that splits on a_best
5. Recurse on the sub lists obtained by splitting on
a_best, and add those nodes as children of node

4. RESULTS

4.1. Feature Selection Results
Using the WEKA ReliefF implementation, several
runs/experiments were performed. We adjusted the
neighbor number k, and number of instances, n. Tables
2-7 shown on the proceeding page depict the top 10
best attributes (features) across multiple values of k
(number of classes). A feature is considered better if it
has a higher correlation to the value being classified.

All instances were used in the data set. There were
a total of 125,973 entries. For the number of neighbors
k, values of two and ten were used. Two is the smallest
total quantity for a class. This makes it reasonable to
make two the most likely accurate weight. Ten was also
used as the number of neighbors with the result having
the same top 10 features except with a different order
among them. These simulations were rerun with a much
smaller set instances chosen at random to see if the
same 10 features were selected again.

Compared to the previous three figures, there are
no changes in the features displayed after changing n
from 5000 to 1000 instances. There are, however, some

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

75

differences in the ordering of the rankings when 1000
random instances are selected, but the same features are
all represented in the top ten.

Figure 1: Results from K-Means Varying Classes and

Feature Selection

Table 2: Top 10 Best Attribute from ReliefF Using
WEKA with k = 10 and n = 5000

Feature	Number	 Feature	Name
3	 service
38	 dst_host_serror_rate
4	 flag
25	 serror_rate
26	 srv_serror_rate
12	 logged_in
39	 dst_host_srv_serror_rate
29	 same_srv_rate
33	 dst_host_srv_count
34	 dst_host_same_srv_rate

Table 3: Top 10 Best Attribute from ReliefF Using
WEKA with k = 5 and n = 5000

Feature	Number	 Feature	Name
3	 service
38	 dst_host_serror_rate
4	 flag
25	 serror_rate
26	 srv_serror_rate
29	 same_srv_rate
12	 logged_in
39	 dst_host_srv_serror_rate
33	 dst_host_srv_count
34	 dst_host_same_srv_rate

Table 4: Top 10 Best Attribute from ReliefF Using
WEKA with k = 2 and n = 5000

Feature	Number Feature	Name
3 service
4 flag
38 dst_host_serror_rate
29 same_srv_rate
25 serror_rate
26 srv_serror_rate
33 dst_host_srv_count
12 logged_in
34 dst_host_same_srv_rate
39 dst_host_srv_serror_rate

Table 5: Top 10 best attribute from ReliefF using
WEKA with k = 10 and n = 1000

Feature	Number Feature	Name	
3 service
38 dst_host_serror_rate
4 flag
25 serror_rate
26 srv_serror_rate
12 logged_in
39 dst_host_srv_serror_rate
29 same_srv_rate
33 dst_host_srv_count
34 dst_host_same_srv_rate

Table 6: Top 10 Best Attributes from ReliefF Using
WEKA with k = 5 and n = 1000

Feature	Number Feature	Name	
3 service
38 dst_host_serror_rate
4 flag
25 serror_rate
26 srv_serror_rate
29 same_srv_rate
12 logged_in
39 dst_host_srv_serror_rate
33 dst_host_srv_count
34 dst_host_same_srv_rate

Table 7: Top 10 Best Attributes from ReliefF Using
WEKA With k = 2 and n = 1000

Feature	Number Feature	Name	
3 service
4 flag
38 dst_host_serror_rate
29 same_srv_rate
25 serror_rate
26 srv_serror_rate
33 dst_host_srv_count
12 logged_in
34 dst_host_same_srv_rate
39 dst_host_srv_serror_rate

0
10
20
30
40
50
60
70
80
90
100

A
b
st
ra
ct
 ‐
1
4
 C
la
ss
es
 ‐
1
0

Fe
at
u
re
s

1
4
 C
la
ss
es
 ‐
A
ll
Fe
at
u
re
s

1
4
 C
la
ss
es
 ‐
1
0
 F
ea
tu
re
s

2
 C
la
ss
es
 ‐
A
ll
Fe
at
u
re
s

2
 C
la
ss
es
 ‐
1
0
 F
ea
tu
re
s

A
cc
u
ra
cy

Correct

Incorrect

Unclassified

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

76

4.2. Classification Results
We use the same number of entries (125,973) for the
classification results. The first classifier used for
clustering was K-Means. Initially, all features were
tested for classification accuracy based on clustering
when 14 clusters were chosen. Afterwards, the ten
features found by the previous ReliefF calculations
were used as a basis for comparison. We found that
using the K-Means algorithm (Fig. 1) our classification
worked best across all 14 classes using 10 features
without the auto-clustering (EM) employed to abstract
the feature set. However, switching to the C4.5
algorithm we see the result dramatically boosted by the
use of the feature abstraction.
 Table 10 shows that the abstraction system
classifies the attack type slightly worse on all 14 classes
(95% vs. 97%) in the abstracted data-set with a
significantly reduced cluster-based data-set. However,
as indicated by Table 11 the classifier also acts far
quicker (347% faster with K-Means and 48% faster
using C4.5) on the simplified cluster-based data set
which can be critical in a time-sensitive application.

Table 8: Results from C4.5 Using 14 Classes
	 C4.5	–All	

Features	
C4.5	–Ten	Best	

Features	
Correct	 99.7967% 97.4791%
Incorrect	 0.2033% 2.5703%

Unclassified	 0% 0%

Table 9: Results Using C4.5and 2 Classes
	 C4.5	–All	

Features	
C4.5	–Ten	Best	

Features	
Correct	 99.7817% 98.487%
Incorrect	 0.2183% 1.513%

Unclassified	 0% 0%

Table 10: Results Using C4.5 and 14 Classes on
Abstract Data Transformed from the EM Algorithm

	 C4.5	–Ten	Best	Features

Correct	 95.0811%

Incorrect	 4.9189%

Unclassified	 0%

Table 11: Time Comparison Using Abstract Features
Vs. Normal Feature Set

10	Features,	14	
Classes	

K‐Means	 C4.5

Abstracted 5.67 3.69

Normal	(in	seconds)	 25.38 5.49

Improved	%	 447.62% 148.78%

5. CONCLUSION
This work introduces a new concept of using auto-
clustering with the Expectation Maximization algorithm
to significantly simplify the feature-set of network

traffic along with the use of auto-feature extraction to
reduce the number of features. As a result, using the K-
Means algorithm our system was able to improve
classification speed over 14 classes by over 347% (K-
Means) and 48% (C-4.5) clearly indicating this method
can be effectively used to improve classification
accuracy by a significant margin.

With the methodologies described in this paper,
administrators are able to assess a network’s health and
status more easily. By utilizing the uniqueness of
various features in a network, they can be clustered and
evaluated to recognize a cyber-attack. There are
multiple avenues for future work using auto clustering
and feature selection in networks. A more complete
version of the KDD99 data set could be used to improve
classification results. Success would depend on
available computer resources. Experiments using a k
value of 10% resulted in long algorithm run-times.
Another interesting area for future research would be
implementing a larger variety classification and feature
selection algorithms. For example, the K-means
algorithm is relatively simple and easy to implement,
but suffers from two drawbacks. First, it is often slow
and expensive when used on large datasets and can be
sensitive to the initial clusters selections (Fung 2001)
which is a stochastic process. Performing a comparative
analysis on various classification and feature selection
algorithms would provide an indication of which
algorithms are more successful in detecting bad network
traffic. Furthermore, there are many parameters
associated with the algorithms used in this paper and a
study to understand how they compare to the current
results when undergoing a wider range of experiments
would prove useful. Finally, a test benchmark could be
constructed to create more realistic data sets than
KDD99. This opens up the ability to perform simulated
attacks to test the classifier. More accurate classifiers
lead to better and more accurate planning and response
systems.

REFERENCES
Coates, A., Lee, H., and Ng, N.A., 2011. An Analysis of

Single-Layer Networks in Unsupervised Feature
Learning, Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics
(AISTATS), JMLR Workshop and Conference
Proceedings, 15.

Erman, J., Arlitt, M., Manhanti, A., 2006. Traffic
Classification Using Clustering Algorithms,
Proceedings of the 2006 SIGCOMM Workshop on
Mining Network Data, 281-286.

Fung, G., 2001. A Comprehensive Overview of Basic
Clustering Algorithm. Artificial Intelligence
(Computer and Information Science), Citeseer press,
1-37.

Garner, S. R., 1995. WEKA: The Waikato environment
for knowledge analysis, Proceedings of the New
Zealand Computer Science Research Students
Conference.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

77

KDD Cup, 1999. Data, Available from:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99
.html [accessed 13 July 2012].

Kononenko, I., Simec, E., and Edvard, I.K., 1995.
Induction of decision trees using RELIEFF.

Kotsiantis, S.B., 2007. Supervised machine learning: A
review of classification techniques, Informatica,
(31), 249–268.

MacQueen, J.B., 1967. Some methods for classification
and analysis of multivariate observations,
Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability. Available
from:
http://home.dei.polimi.it/matteucc/Clustering/tutoria
l_html/kmeans.html#macqueen. [accessed 13 July
2012].

McGregor, A., Hall, M., Lorier, P., Brunskill, J., 2004.
Flow Clustering Using Machine Learning
Techniques, Passive & Active Measurement
Workshop, April 19-20, France.

J. R. Quinlan, J.R., 1993. C4.5: Programs for Machine
Learning, Available:
http://books.google.com/books?id=1F1QAAAAMA
AJ [accessed 13 July 2012].

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani,
A.A., 2009. A detailed analysis of the KDD CUP 99
data set, IEEE Symposium on Computational
Intelligence for Security and Defense Applications.

Zander, S., Nguyen, T., and Armitage, G., 2005.
Automated Traffic Classification and Application
Identification using Machine Learning, Proceeding
of the IEEE Conference on Local Computer
Networks 30th Anniversary, 250-257.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

78

