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ABSTRACT 
Even after a network intrusion system (IDS) has 
identified a cyber-attack, network administrators are 
still faced with the difficult challenge of assessing 
network health and status in order to appropriately take 
action to mitigate damage caused by such an attack due 
to the large amount of data available from the network 
components. This paper explores the use of auto-
clustering to abstract network meta-data to form high-
level units of information that are more comprehensible 
for a network administrator or an AI Agent to 
understand and act on.  We perform an empirical 
analysis to evaluate our approach using the NSL-
KDD99 dataset for both abstraction of network log data 
and attack family classification. By auto-clustering, we 
significantly increase the classification speed without 
greatly increasing the error. 

 
Keywords: Classification, KDD99, IDS, C4.5, K-Means 
 
DISCLAIMER 
The views expressed in this document are those of the 
authors and do not reflect the official policy or position 
of the United States Air Force, Department of Defense, 
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1. INTRODUCTION 
A significant problem with computer networks today is 
the ability to defend against cyber-attacks in real-time. 
Defending attacks becomes more difficult when there 
are an overwhelming amount of network features and 
samples to analyze. The goal of this research is to detect 
an attack and formulate a plan to counter the attack as it 
is happening. The primary focus of this paper will be on 
the detection portion of the problem. Without the 
detection of a cyber-attack, the process to create and 
carry out a plan to mitigate its effects cannot be 
developed. This plan should include information about 
the type of attack that is likely occurring in order to 
produce a set of actions or procedures to combat it. By 
clustering and classifying network traffic, personnel or 
monitoring agents can more easily determine if the 
traffic is originating from an attack or otherwise normal 
activity. This classifier can be trained on a given 
network to determine what normal traffic is. 
Furthermore, if significant features are highlighted 
before the classifier is created, some of the complexity 

can be reduced so attacks can be detected more easily. 
Clustering is the grouping of similar data items into 
clusters (Fung 2001). In this application, clustering is 
performed on the individual features of the network 
trace data so that the important/common features of 
attack strategies can be highlighted. The data set used is 
the well-known KDD 99 which is network data 
produced from a simulated Air Force network 
experiencing different forms of network attacks. WEKA 
is a software workbench design to support the 
application of machine learning technology to real 
world data sets (Garner 1995). WEKA is useful because 
of its versatility in allowing data to be presented in its 
own format, such as the KDD 99 data set, and it is 
designed to encompass all learning algorithms under a 
common interface. The algorithms used for this research 
are ReliefF, clustering by K-Means, and C4.5. 
 
2. RELATED WORK 
There has been a great deal of research in the area of 
learning feature representations from unlabeled data sets 
for high-level tasks such as classification. Much of this 
research has shown great progress on benchmark data 
sets like NORB and CIFAR by making use of complex 
unsupervised learning algorithms (Coates, Lee, and Ng 
2011). 

The WEKA system is traditionally used with 
agricultural data sets and these data sets tend to be 
larger and of lesser quality than those in machine 
learning data sets (Garner 1995). Applying the WEKA 
system to machine learning data sets allows us to 
answer questions like “Do these changes in certain 
features indicate a cyber attack?” as well as  gain some 
insight into how to apply learning algorithms to existing 
real world data sets. 

Previously, the classification of network traffic 
was performed through the use of port-based or 
payload-based analysis. This has become increasingly 
more difficult as peer-to-peer networks (P2P) adapt to 
using dynamic port numbers, masquerading techniques, 
and encryption to avoid detection (Erman, Arlitt, and 
Manhanti 2006). To combat these cyber-attack 
adaptations, an alternative approach for classifying 
network traffic is introduced by exploiting and 
extracting common or distinct attack strategy 
characteristics. 
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Authors of another related paper (McGregor, Hall, 
Lorier, and Brunskill 2004) describe their efforts using 
the Expectation Maximization (EM) algorithm to cluster 
network flows into different application types with a 
fixed set of attributes (features). The EM algorithm 
separates the network traffic into a few basic classes but 
the accuracy and quality of the clustering is limited due 
to nature of its fixed attributes. Another technique uses 
the sequential forward selection (SFS) algorithm 
(Zander, Nguyen, and Armitage 2005) to find the best 
feature set to avoid an expensive, exhaustive search. 
Some other data sets, similar to KDD 99, used with the 
SFS feature selection algorithm include the Auckland-
VI, NZIXII and Leipzig-II traces. 

This paper will use the popular and well-known 
KDD 99 data set for experimentation and evaluation 
purposes. A modification of the Relief algorithm is used 
for feature selection and clustering is performed via the 
K-means algorithm. Additionally, the C4.5 algorithm is 
used to build a decision tree based on the feature 
selection results. 

 
3. METHOD 

 
3.1. Data Set 
The data set that is used to evaluate the approach 
introduced in this article is the KDD99 data set. This 
data set was introduced for the 1999 KDD Cup 
challenge to accurately classify network data to a given 
class of attack or normal traffic (KDD Cup 1999). The 
data set consists of both normal and attack traffic 
classes, with the attack classes making up the majority 
of the cases. In total, there are 23 classes and 41 
features in the original KDD99 data set (Tavallaee, 
Bagheri, Lu, and Ghorbani 2009). Later, this data set 
was transformed into to NSL-KDD99 which solved 
some issues regarding redundant samples and the over 
training of classifiers. Dimensions of this data set 
include measures such as the protocol type, service, 
server error rates, and byte counts. The values types in 
the data are nominal, discrete, and real. Attack types 
include back dos, buffer_overflow u2r, ftp_writer2l, 
guess_passwd r2l, imap r2l, ipsweep probe, land dos, 
loadmodule u2r, multihop r2l, neptune dos, nmap probe, 
perl u2r, phf r2l, pod dos, portsweep probe, rootkit u2r, 
satan probe, smurf dos, spy r2l, teardrop dos, 
warezclient r2l, and warezmaster r2l. 
 Table 1 shows the breakdown of the sample sizes 
per class in the NSL-KDD99 data set. In this article, 
only classes with 20 or more samples will be considered 
due to the difficulty that classifiers have in 
distinguishing between small sample sizes because they 
cannot be easily trained to do so.  After this 
modification, there are 14 classes to process and 
125,901 samples in all. This is a relatively small 
decrease as the original sample size was 125,973. 

 
3.2. Feature Selection 
Before a classifier is created, only the NSL-KDD99 
data set’s significant features will be selected.  The goal 

here is to reduce the number of features to be classified 
so that there are fewer features to process and yet the 
accuracy is not diminished too greatly. The ReliefF 
algorithm (Garner 1995) was used to select the best data 
set features for use by the classifier. 

The Relief algorithm, shown in Algorithm 1, is the 
original algorithm that ReliefF is built upon. The Relief 
algorithm requires an input n for the number of 
instances to randomly select and updates the weight 
values associated with each feature based on choosing 
the two nearest neighbors. One of these two nearest 
neighbors is selected inside the class of the randomly 
selected instance while the other is the nearest outside 
the class. The ReliefF algorithm slightly modifies the 
original Relief algorithm by using the nearest k 
neighbors, where k is specified as an input, in and 
outside the class. Instead of choosing one nearest 
neighbor, it chooses k neighbors. This modification 
reduces the number of random selections of instances 
needed.  ReliefF also allows for any number of classes. 
 

Table 1: Number of Samples, NSL-KDD99 Classes 

Item Type Count

1 normal 67343 
2 neptune 41214 

3 werezclient 890 

4 ipsweep 3599 

5 portsweep 2931 

6 teardrop 892 

7 nmap 1493 

8 satan 3633 

9 smurf 2646 

10 pod 201 

11 back 956 

12 guess_passwd 53 

13 ftp_write 8 

14 multihop 7 

15 rootkit 10 

16 buffer_overflow 30 

17 imap 11 

18 warezmaster 20 

19 phf 4 

20 land 18 

21 loadmodule 9 

22 spy 2 

23 perl 3 

 
 The Relief algorithm, shown in Algorithm 1, is the 
original algorithm that ReliefF is built upon. The Relief 
algorithm requires an input n for the number of 
instances to randomly select and updates the weight 
values associated with each feature based on choosing 
the two nearest neighbors. One of these two nearest 
neighbors is selected inside the class of the randomly 
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selected instance while the other is the nearest outside 
the class. The ReliefF algorithm slightly modifies the 
original Relief algorithm by using the nearest k 
neighbors, where k is specified as an input, in and 
outside the class. Instead of choosing one nearest 
neighbor, it chooses k neighbors. This modification 
reduces the number of random selections of instances 
needed.  ReliefF also allows for any number of classes. 
 

set all weights W[A]:=0.0 
for i ← 1 to n do 
   begin 
      select instance of R randomly 
      H ← nearest hit 
      M ← nearest miss 
      for A ← 1 to cardinality(all_attributes) do 
         W[A]←W[A]–diff(A,R,H)/n + diff(A,R,M)/n 
   end 

Algorithm 1: Relief Algorithm Pseudocode 
(Kononenko, Simec, and Edvard 1995) 

  
 The primary parameters in WEKA for the ReliefF 
algorithm are the number of neighbors and the number 
of instances. The number of neighbors parameter is 
used to select a given number of neighbors to search in 
the algorithm. The neighbors include those samples in 
the randomly selected sample’s class as well as the 
nearest neighbors in the other classes. Because of this, 
the parameter has to be carefully selected so the number 
does not go below the smallest total from amongst the 
classes. The number of instances parameter defines the 
number of instances to select. In each instance, a 
random sample is selected and the ReliefF algorithm 
updates the weights of each feature.  The weights are 
similar to a scoring feature used to rank the best features 
and updated according to the equation in Equation 1. 
 


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
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 Equation 1 is the ReliefF weight update equation. 
Please refer to (Kononenko, Simec, and Edvard 1995) 
for a full description of this derivation. 
 In feature selection, a greater number of instances 
will produce the most accurate weights due to the fact 
that they will approach their steady state values after 
enough random samples are selected. After the features 
are selected, a classifier will be built using those 
features. 
 
3.3. Classification 
The data is broken up using a 10-fold validation to test 
the accuracy of the proposed classification method. The 
classification was performed with clustering using both 
the K-Means (MacQueen 1967) and C4.5 algorithms. 
The K-means algorithm is built upon a very simple 
foundation: Given a set of initial clusters, assign each 
point to one of them and each centroid of the cluster is 
replaced by the mean point on their respective cluster 
(Fung 2001). 

 The pseudocode for the K-Means algorithm is 
shown below (MacQueen 1967): 
 
1. Place K points into the space represented by the 
objects that are being clustered. These points represent 
initial group centroids. 
2. Assign each object to the group that has the closest 
centroid. 
3. When all objects have been assigned, recalculate 
the positions of the K centroids. 
4. Repeat Steps 2 and 3 until the centroids no longer 
move. This produces a separation of the objects into 
groups from which the metric to be minimized can be 
calculated. 
 
 The K-Means classifier is chosen for this 
application due to its ease of implementation. The 
number of clusters to be chosen is based on the number 
of classes in the data set.  The goal is to have each class 
mapped to a cluster using the best features selected by 
the ReliefF analysis.  The trained classifier will then 
classify a set of test samples and the accuracy will be 
measured. 
 Pseudocode for the C4.5 algorithm (Quinlan 1993), 
also known as J48 in the open source Java 
implementation in WEKA, is shown below (Kotsiantis 
2007): 
 
1. Check for base cases 
2. For each attribute a, find the normalized 
information gain from splitting on a 
3. Let a_best be the attribute with the highest 
normalized information gain 
4. Create a decision node that splits on a_best 
5. Recurse on the sub lists obtained by splitting on 
a_best, and add those nodes as children of node 
 
4. RESULTS 

 
4.1. Feature Selection Results 
Using the WEKA ReliefF implementation, several 
runs/experiments were performed. We adjusted the 
neighbor number k, and number of instances, n. Tables 
2-7 shown on the proceeding page  depict the top 10 
best attributes (features) across multiple values of k 
(number of classes).  A feature is considered better if it 
has a higher correlation to the value being classified. 

All instances were used in the data set. There were 
a total of 125,973 entries. For the number of neighbors 
k, values of two and ten were used. Two is the smallest 
total quantity for a class. This makes it reasonable to 
make two the most likely accurate weight. Ten was also 
used as the number of neighbors with the result having 
the same top 10 features except with a different order 
among them. These simulations were rerun with a much 
smaller set instances chosen at random to see if the 
same 10 features were selected again. 

Compared to the previous three figures, there are 
no changes in the features displayed after changing n 
from 5000 to 1000 instances. There are, however, some 
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differences in the ordering of the rankings when 1000 
random instances are selected, but the same features are 
all represented in the top ten. 

 

 
Figure 1: Results from K-Means Varying Classes and 

Feature Selection 
 
Table 2: Top 10 Best Attribute from ReliefF Using 
WEKA with k = 10 and n = 5000 

Feature	Number	 Feature	Name
3	 service 
38	 dst_host_serror_rate 
4	 flag 
25	 serror_rate 
26	 srv_serror_rate 
12	 logged_in 
39	 dst_host_srv_serror_rate
29	  same_srv_rate 
33	 dst_host_srv_count 
34	 dst_host_same_srv_rate 

 
Table 3: Top 10 Best Attribute from ReliefF Using 
WEKA with k = 5 and n = 5000 

Feature	Number	 Feature	Name
3	 service 
38	 dst_host_serror_rate 
4	 flag 
25	 serror_rate 
26	 srv_serror_rate 
29	  same_srv_rate 
12	 logged_in 
39	 dst_host_srv_serror_rate
33	 dst_host_srv_count 
34	 dst_host_same_srv_rate 

Table 4: Top 10 Best Attribute from ReliefF Using 
WEKA with k = 2 and n = 5000 

Feature	Number Feature	Name
3 service 
4 flag 
38 dst_host_serror_rate 
29  same_srv_rate 
25 serror_rate 
26 srv_serror_rate 
33 dst_host_srv_count 
12 logged_in 
34 dst_host_same_srv_rate 
39 dst_host_srv_serror_rate

 
Table 5: Top 10 best attribute from ReliefF using 
WEKA with k = 10 and n = 1000  

Feature	Number Feature	Name	
3 service 
38 dst_host_serror_rate 
4 flag 
25 serror_rate 
26 srv_serror_rate 
12 logged_in 
39 dst_host_srv_serror_rate
29  same_srv_rate 
33 dst_host_srv_count 
34 dst_host_same_srv_rate 

 
Table  6: Top 10 Best Attributes from ReliefF Using 
WEKA with k = 5 and n = 1000  

Feature	Number Feature	Name	
3 service 
38 dst_host_serror_rate 
4 flag 
25 serror_rate 
26 srv_serror_rate 
29  same_srv_rate 
12 logged_in 
39 dst_host_srv_serror_rate
33 dst_host_srv_count 
34 dst_host_same_srv_rate 

 
Table 7: Top 10 Best Attributes from ReliefF Using 
WEKA With k = 2 and n = 1000 

Feature	Number Feature	Name	
3 service 
4 flag 
38 dst_host_serror_rate 
29  same_srv_rate 
25 serror_rate 
26 srv_serror_rate 
33 dst_host_srv_count 
12 logged_in 
34 dst_host_same_srv_rate 
39 dst_host_srv_serror_rate
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4.2. Classification Results 
We use the same number of entries (125,973) for the 
classification results. The first classifier used for 
clustering was K-Means. Initially, all features were 
tested for classification accuracy based on clustering 
when 14 clusters were chosen. Afterwards, the ten 
features found by the previous ReliefF calculations 
were used as a basis for comparison.  We found that 
using the K-Means algorithm (Fig. 1) our classification 
worked best across all 14 classes using 10 features 
without the auto-clustering (EM) employed to abstract 
the feature set. However, switching to the C4.5 
algorithm we see the result dramatically boosted by the 
use of the feature abstraction. 
 Table 10 shows that the abstraction system 
classifies the attack type slightly worse on all 14 classes 
(95% vs. 97%) in the abstracted data-set with a 
significantly reduced cluster-based data-set. However, 
as indicated by Table 11 the classifier also acts far 
quicker (347% faster with K-Means and 48% faster 
using C4.5 ) on the simplified cluster-based data set 
which can be critical in a time-sensitive application. 

 
Table 8: Results from C4.5 Using 14 Classes 
	 C4.5	–All	

Features	
C4.5	–Ten	Best	

Features	
Correct	 99.7967% 97.4791% 
Incorrect	 0.2033% 2.5703% 

Unclassified	 0% 0% 
 

Table 9: Results Using C4.5and 2 Classes 
	 C4.5	–All	

Features	
C4.5	–Ten	Best	

Features	
Correct	 99.7817% 98.487% 
Incorrect	 0.2183% 1.513% 

Unclassified	 0% 0% 
 
Table 10: Results Using C4.5 and 14 Classes on 
Abstract Data Transformed from the EM Algorithm 

	 C4.5	–Ten	Best	Features

Correct	 95.0811% 

Incorrect	 4.9189% 

Unclassified	 0% 

 
Table 11: Time Comparison Using Abstract Features 
Vs. Normal Feature Set 

10	Features,	14	
Classes	

K‐Means	 C4.5

Abstracted  5.67 3.69

Normal	(in	seconds)	 25.38 5.49

Improved	%	 447.62% 148.78%

 
5. CONCLUSION 
This work introduces a new concept of using auto-
clustering with the Expectation Maximization algorithm 
to significantly simplify the feature-set of network 

traffic along with the use of auto-feature extraction to 
reduce the number of features. As a result, using the K-
Means algorithm our system was able to improve 
classification speed over 14 classes by over 347% (K-
Means) and 48% (C-4.5)  clearly indicating this method 
can be effectively used to improve classification 
accuracy by a significant margin. 

With the methodologies described in this paper, 
administrators are able to assess a network’s health and 
status more easily. By utilizing the uniqueness of 
various features in a network, they can be clustered and 
evaluated to recognize a cyber-attack. There are 
multiple avenues for future work using auto clustering 
and feature selection in networks. A more complete 
version of the KDD99 data set could be used to improve 
classification results. Success would depend on 
available computer resources. Experiments using a k 
value of 10% resulted in long algorithm run-times. 
Another interesting area for future research would be 
implementing a larger variety classification and feature 
selection algorithms. For example, the K-means 
algorithm is relatively simple and easy to implement, 
but suffers from two drawbacks. First, it is often slow 
and expensive when used on large datasets and can be 
sensitive to the initial clusters selections (Fung 2001) 
which is a stochastic process. Performing a comparative 
analysis on various classification and feature selection 
algorithms would provide an indication of which 
algorithms are more successful in detecting bad network 
traffic. Furthermore, there are many parameters 
associated with the algorithms used in this paper and a 
study to understand how they compare to the current 
results when undergoing a wider range of experiments 
would prove useful. Finally, a test benchmark could be 
constructed to create more realistic data sets than 
KDD99.  This opens up the ability to perform simulated 
attacks to test the classifier. More accurate classifiers 
lead to better and more accurate planning and response 
systems. 
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