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ABSTRACT 
Nowadays, the hypothesis of using low cost 
“unmanned” vehicles, to replace men into territorial 
waters’ surveillance operations, is taking over. This 
would allow few operators to patrol great sea areas, 
reducing consequently costs of patrolling missions led 
by human resources. Because of low autonomy of 
robotic vehicles, compared with the autonomy of 
normal vehicles, path’s planning algorithms are needed 
to maximize the length of each path, respecting each 
vehicle’s autonomy and the constraints due to the 
vehicles’ features, revisits of sensible areas etc. etc. The 
following article describes a heuristic approach to the 
computing of these navigation plans. 
 
Keywords: patrolling, optimization problem, path 
planning, submarine vehicles. 

 
1. INTRODUCTION 

The main activities carried out by the Coast Guard, 
are focused on improving the sailing security, the 
protection of the marine environment and ensuring the 
respect of National and International laws. For this 
purpose, a great number of resources are involved in 
daily coast patrolling operations, with consequently 
high costs. To reduce these costs, joint missions with 
other police teams are carried out. This is not always 
enough  to ensure sufficient surveillance, due to, for 
example, a great number of coast’s Kilometers (e.g. 
Italy has more than 8000 km of coasts). The risk is to 
leave some areas “unvisited”, which might be 
particularly sensible, for which the maritime safety 
and/or the marine environment could be compromised. 
This article is focused on the problem of a submarine 
patrolling, or else the problem of patrolling sea sub-
areas located at different depths. This is an important 
matter for what concerns the protection of marine 
environments and the improvement of the sea security. 

Using “unmanned” vehicles to support patrolling 
operations would allow surveillance of great sea 
extensions with very few operators, allowing the local 
government, employed into monitoring of its territorial 
waters, to exploit in an efficient way its own resources 
of men and vehicles. 
 
2. THE PATROLLING PROBLEM 
 

2.1. A submarine sea area’s patrolling 
The problem of a submarine sea area’s patrolling can be 
defined as follows: “given a set of vehicles and an area, 
the paths assigned to each vehicle must be calculated 
taking into account that each point into the area would 
be visited by at least a vehicle”. 
Consequently, the following hypothesis can be 
formulated: 

1. Sailing autonomy: each vehicle has its own 
sailing autonomy, which is the capacity of 
patrolling a certain amount of miles, depending 
on its fuel.  

2. Area points: visiting some area points could be 
seen as visiting some interesting sites, such as 
buoys or strategic points, or else, given a 
precise sea area, visiting it all. We assume that 
vehicles have a 360 degrees sight of a certain 
ray, depending by the sensor installed on each 
vehicle.  

3. Sea Strength: a point’s sea strength is 
represented by an integer number between 0 
and 9 which gives and information about the 
sea state into that area, based upon the 
Beaufort scale (i.e. 0=calm, 9=windstorm). 
Each vehicle has a certain sea capacity, defined 
by an integer number between 0 and 9 as well, 
that indicates the maximum sea strength that 
the hull can endure (i.e. a vehicle with sea 
capacity C can visit a point having sea strength 
F if C ≥ F). 

4. Equipment: each vehicle is equipped with 
particular tools and/or sensors. Some points of 
the area may require vehicles equipped with a 
certain tool (for example, it may be a weapon). 

5. Revisiting sensitive points: some points of the 
area may be considered more “sensitive” than 
others, so that they require a revisit, for 
example at defined time intervals, by at least a 
vehicle.  

6. Obstacles presence: some points might not be 
patrolled because of the presence of 
“obstacles” (i.e. islands, low backdrops, etc. 
etc...) 

7. Depth: each vehicle can travel at different 
depths, considering its own depth constraint. 
Each node of the sea selected area is located at 
a different depth. 
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The optimization problem of the patrolling of a 
submarine sea area consists in searching for a “better” 
solution, composed by a set of paths, in order to visit 
the selected sea area  fully, with the minimum time and 
considering the hypothesis above.  
It’s important to underline that the “best” solution (a 
more “efficient” patrolling) may involve only some 
available vehicles. 

 
 

3. THE PATROLLING PROBLEM SEEN AS A 
MTSP 
 

3.1. Variants to the original problem 
Solution of the patrolling problem can be reconducted 
to the well-known mTSP in literature (multiple 
Travelling Salesman Problem) (see Brummit and Stentz 
(1996), Brummit and Stentz (1998), Yu et al. (2002), 
Ryan et al. (1998). The mTSP consists of a 
generalization of the Travelling Salesman Problem with 
more than one salesman (see Mole et al. (1983), Laporte 
et al. (1985), Toth and Vigo (2002)). 
The classic mTSP formulation provides that the m 
salesmen must visit each city only one time, with the 
minimum possible “cost”. 
In the specific case of the patrolling problem, the 
following variants to the original formulation must be 
considered: 

• Multiple Deposits: more deposits exist, with a 
certain number of salesmen dislocated into 
each of them. The salesmen can return into 
their own starting deposit after completing the 
tour or return into a random deposit (the initial 
number of salesmen must remain the same at 
the end of the trip). 

• Number of salesmen: the number of salesmen 
can be represented by a limited variable or can 
be a fixed number. 

• Fixed cost: if the number of salesmen isn’t 
fixed, then each salesman has usually a fixed 
cost attributed, which has to be added to the 
function cost whenever this salesman is 
employed into the solution.  

• Time Windows: some points must be visited 
into determined time intervals, named time 
windows. This is an important mTSP extension 
and it’s named as Multiple Travelling 
Salesman Problem with Time Windows 
(mTSPTW) (see Macharis and Bontekoning 
(2004), Wang and Regan (2002), Ruland and 
Rodin (1997), Mitrovi´et al. (2004)).  

• Other restrictions: these restrictions consist in 
a particular constraint on a particular 
equipment of the vehicle (salesman), which 
visits a point, on the vehicle’s capacity to 
sustain sea’s strength in that point, on the 
maximum length of paths attributed to each 
single vehicle, due to their autonomy and on 
the presences of obstacles. 

 

 
4. PROBLEM DEFINITION 
 
Given : 

• A graph G = (V,E) where V is a set of vertexes and 
E a set of arcs with a specific “cost” connecting 
vertexes; 

• m, the number of salesmen (vehicles); 

• deposits Di ג G from which salesmen must start 

their trip; 

• ॿ set of all possible configurations, or all possible 

choices of m paths starting from and ending into 
the assigned deposit and visiting once and only 
once each one of all the other vertexes; 

• ࢜  set of constraints; 

• ॿ࢜  sub-set of the configurations respecting the 

assigned constraints ࢜; 

• f : x ג ॿ հ Թ cost function assigned to the problem 

solution. 
 
 Solving the patrolling problem consists in finding a 

configuration x�ג ॿ  which respects the constraints  

and minimizes the total cost, or: x=min(f(x)) with x 

 .ॿ࢜ ג

4.1. Graph construction 
The set V of graph’s vertexes is built by  coverage of the 
free-space by a Voronoi diagram. Cells of the diagram 
have a maximum ray compatible with the sensibility of 
the sensor used for patrolling, installed on each vehicle. 
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Figure 1: Voronoi Diagram 

 
Vehicles and areas that have to be visited are considered 
as points while the obstacles are modeled as polygons, 
defined by their vertexes. 
The set E is composed by all arcs of a complete graph 
built with the V set of vertexes, where each arc of the 
graph has an associated cost, equal to the Euclidean 
distance of its vertices, considering their latitude, 
longitude and depth. 

 
4.2. Cost function  

The cost function f :ॿ հ Թ is defined on the set ॿ of all 

possible solutions and is computed as: 

f(x)  = ∑  [length (p) + penalty(p)] 

              p�{paths of solution x} 
with: 

• length (p) = length of the path p (assigned to a 
vehicle) and belonging to the solution x 

• penalty(p) = sum of all penalties of path p 
 
penalties are computed as follows: 

 
 
• Penalty for vehicle’s autonomy 

Autonomy is the maximum length of a path that a 
vehicle could make. The penalty for a path’s autonomy 
p is: 
   penalty(p) = FMULT · [c(p) – cmax(p)] 
      with: 

− c(p) = length of path p 
− cmax(p) = maximum length of p 
− FMULT = empirical multiplicative factor 

 
The algorithm will try to satisfy the constraint 
considering high values of FMULT constant. But a too 
high value of FMULT may cause the algorithm to stop 
into a cost function’s local minima. 
 

• Penalty for time windows 
Revisiting of one or more vehicles on a site is 
equivalent to define time windows (more or less 
regular) on this site, which at least a vehicle must visit. 
Time windows are attributed each one to a different 
node with the same position, added to the set V of graph 
G (i.e. if a node has to be visited twice, there could be 

added to the map other two nodes into the same 
position, but having different time windows). If a vertex 
v belonging to a path p is associated to a time window 
[t1v, t2v] (with t1v, t2v minimum and maximum visit 
time), and the visit time on that node, following p, is 
t(v), the related penalty is computed as: 

penalty(p) = TMULT · [∑  windowPenalty(v,t1v,t2v)2] 

                                      v�p 
with: 
windowPenalty (v,t1v,t2v)  = 0  se  t1v ≤ t(v) ≤ t2v  
windowPenalty (v,t1v,t2v)  = t(v) - t2v se t(v) > t2v 
windowPenalty (v,t1v,t2v)  = t1v – t(v) se t(v) < t1v 
 
and TMULT empirical multiplicative factor. 
 

• Sea Strength Penalty 
Sea strength on a vertex v is defined as an integer 
number s(v) between 0 and 9, and each vehicle m 
sustain a maximum sea strength s(m). A vehicle having 
strength s(m) can visit a site with strength s(v) if s(m) ≥ 
s(v). 
Sea strength penalty of a path p is: 

 
 penalty(p)=MMULT · (#nodes v s.a. s(v)> s(m)) 

 
with MMULT empirical multiplicative factor. 
 

• Equipment Penalty 
Some nodes might have the constraint that they could 
be visited only by vehicles equipped with a particular 
sensor or tool (or weapon). 
The equipment penalty of a vehicle with a path p is 
computed as follows: 
 
penalty(p)=EMULT · (#nodes v s.a. m isn’t provided 
with the right equipment required by v) 
 
With EMULT empirical multiplicative factor. 
 

• Penalty for long arcs 
To avoid inserting long arcs into the final solution, 
optimizing the length of each sub-path, a possible 
choice is to associate a penalty if the distance between 
two connected nodes into a path p is longer than a 
certain length l, as 2*ray of the sensors equipped on 
each vehicle. 
The penalty for long arcs is as follows: 
  
penalty(p)=LMULT· (#arcs e associated to vehicle m 
s.a. l(e) > 2*ray of the sensors equipped on m). 
 
With LMULT empirical multiplicative factor. 
 

• Obstacles Penalty 
A vehicle must necessarily avoid obstacles into the sea 
area that needs patrolling: this has been made inserting 
a certain penalty in case at least one of the arcs 
belonging to the set of paths would go through one of 
the obstacle’s sides. 
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     The obstacles penalty is computed as: 
 
penalty(p)=OMULT if at least an arc belonging to the 
set of paths P goes through one of the obstacle’s sides. 
 
With OMULT empirical multiplicative factor. 
 
 
5. HEURISTIC APPROACH 
The heuristic approach used to solve the patrolling 
problem is the Simulated Annealing. 
This algorithm is also called “meta-heuristic” and 
consists into an extension of the classical local search. 
Considering the local search, when a solution’s 
neighborhood is explored, the only information owned 
is the best current solution and the related cost function 
value. 

 

5.1. Simulated Annealing 
This approach, used to solve the patrolling 

problem, is inspired by the industrial process named 
annealing, and it’s known in literature with the name of 
Simulated Annealing (see Aarts and Korst (1989), 
Dekkers and Aarts (1991), Romeijn and Smith (1994)). 
While a liquid’s molecules tend to move freely at high 
temperatures, if a temperature is lowered in a 
sufficiently slow way, the molecules’ thermic mobility 
is lost and they tend to form a pure crystal 
corresponding to a minimum energy state.  

The annealing is a thermic treatment used mostly 
on steel and copper, the slower cooling we have, the 
stabler structure we obtain. Similarly, the approach 
tends to converge to an optimal solution (see Bélisl 
(1992), Locatelli (1996), Locatelli (2000)) using this 
heuristic and choosing a decreasing sequence of 
temperatures, with a sufficiently slow ‘cooling’: as we 
arrive to a minimum energy state through the physical 
process, in the same way we obtain a solution (the 
global optima) with a minimum cost function value, 
using the annealing into optimization problems. 

The peculiarity of Simulated Annealing is the 
capacity to avoid local minima accepting also the 
transitions that increase the value of cost function f.  
Accepting configurations with a worse cost function is 
the only way to escape from local minima. 

 
The heuristic is articulated into the following steps: 
 
1. A sequence of temperatures T0>T1>T2>… with 

  Ti tending to 0 for i→∞ is fixed; 
2. A rounded positive numbers sequence  

  N0>N1>N2>… and an iterator  j = 0 
are fixed; 

3. The initial solution is generated; 
4. T = Tj and N = Nj, and an iterator i = 0 are set; 
5. If i <= N go to Step 6., otherwise go to Step 9. 
6. A new random solution x’ is generated (see 

par. 5.2) 
7. If f(x') < f(x) then x = x', otherwise x = x' with 

a certain probability: 

            p = e-[f(x') – f(x)] / T 

 
8. i = i + 1 and the heuristic returns to Step 5. 
9. j = j + 1 and the heuristic returns to Step 4. 
 

5.2. Random generation of a solution 
To generate a solution randomly, the idea is to start 

from the last solution and choose randomly one of its 
“transformations” listed below: 

 
1. Move 1-0 (Relocate) 
2. Move 1-1 
3. Move 2-0 (Double relocate) 
4. Move 2-1 
5. Move Or-Opt 
6. Move CROSS 
7. Move 2-Opt 
 
 Once a transformation to apply is found (Move), 

the vehicle containing the first vertex used for the 
exchange is chosen randomly. The other vertex (or 
others) involved into the exchange are chosen into the 
‘neighborhood’ of the first vertex. 

 
The different transformations used by the algorithm 

are: 
 
1. Move 1-0 (Relocate): a vertex is moved into 

another position of the same vehicle’s path, or 
else into another vehicle’s path; 

 
Figure 2: illustration of a “relocate” move 

 
2. Move 1-1: a vertex into a vehicle’s path is 

exchanged with a vertex contained into another 
vehicle’s path; 

 
Figure 3: illustration of a move 1-1 

 
3. Move 2-0 (Double relocate): a couple of near 

vertexes is moved into another position of the 
same vehicle’s path or into another vehicle’s 
path; 

 

 
Figure 4: illustration of a “double relocate” move 
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4. Move 2-1: a couple of near vertexes is 
exchanged with a vertex contained into another 
vehicle’s path; 

 

 
Figure 5: illustration of a move 2-1 

 
5. Move OrOpt: two vertexes belonging to the 

same path swap their neighbors, maintaining 
all the rest unaltered;  

 

                 
Figure 6: illustration of a move OrOpt 

 
 
6. Move CROSS: two salesmen exchange a sub-

path. This kind of move contains also the 
relocate ones and the exchanges between nodes 
of different paths (Move 1-1 and 2-1). 

 

    Figure 7: illustration of a move CROSS 
 
7. Move 2-Opt: Two vehicles exchange their 

paths, starting from two vertexes. Two arcs get 
removed (i.e. (i, j) and (h, k)) and two new arcs 
are added, (i, k) and (h, j). This is possible if 
and only if the two vehicles involved end their 
routes into the same deposit. 

 

          
Figure 8: illustration of the move 2-Opt 

 
6. EXPRIMENTAL RESULTS 
Here below are shown some results taken from the 
application of this algorithm, using vehicles having the 
same maximum velocity but with different autonomy. 

Each point of the area is defined by three 
coordinates:  

• x = longitude 
• y = latitude 
• z = depth 
 

 
Figure 9: 3D representation of a path 

 
The following cases have been considered: 
 
1. case without any particular point into the sea 

area (so no particular constraints on sea 
strength, vehicle’s equipment, nor revisits of 
sensible points) 

 
2. case with all the constraints listed before. 
 

6.1. Case without constraints 
In Figure 10 we may observe paths attributed to each 
vehicle into the selected submarine sea area: each path 
is represented by a set of arcs colored differently, each 
node is colored in grey, except for the deposits, each 
one having the same color of the path that starts from 
there. In this example, each node is located at a different 
depth. 

 
Figure 10: Case without constraints 2D 

 
Figure 11: Case without constraints 3D 

 
 

Table 1: Results without constraints 
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Vehicle Used Color Autonomy 
(Km) 

Vel. 
(Km/h) 

Path Length 
(Km) 

1 YES RED 233,81 10 0,28 

2 YES BLUE 306,05 10 28,9 

3 YES CYAN 493,55 10 437,71 

4 NO YELLOW 86,91 10 0 

5 NO WHITE 166,3 10 0 

6 YES GREY 497,33 10 176,5 

7 YES GREEN 281,19 10 230,04 

Total number of vehicles: 7 

Vehicles involved: 5 

Solution cost: 873.42Km 

It’s noticeable that the selected sea area is completely 
visited using only 5 among the 7 vehicles available. 

 
6.2. Case with constraints 
In Figure 11 we may observe paths attributed to each 
vehicle available into the selected submarine sea area, 
considering all the set of constraints described before: 
nodes without any particular constraint are represented 
in grey, nodes with revisits are colored in green, the 
ones with a certain sea strength are colored in red, 
while the ones needing a particular equipment are 
represented in yellow. In this example, each node is 
located at a different depth.  

   
Figure 12: Case with constraints 2D 

 
 

 Figure 14: Case with constraints 3D 

 
 

Table 2: Results with constraints 

Vehicle Used Color Autonom
y (Km) 

Vel. 
(Km/h) 

Sea 
Strength Equip. 

Path 
Length 
(Km) 

1 YES RED 430 10 NO NO 201,15 

2 YES BLUE 449,8 10 NO YES 3,85 

3 YES CYAN 431,25 10 YES YES 347,68 

4 YES YELLOW 176,43 10 YES NO 0,34 

5 YES WHITE 467,92 10 NO YES 407,15 

6 NO GREY 376,05 10 NO YES 0 

7 NO GREEN 318 10 NO NO 0 

Total number of vehicles: 7 

Vehicles involved: 5 

Solution cost: 960.19Km 

It’s noticeable that the selected sea area is completely 
visited using 5 among the 7 vehicles available. 

Vehicle 3 (in cyan), is the only one able to visit sites 
with high strength of the sea and sites that apply for 
special equipment. 
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