
HEURISTIC APPROACH FOR PATHS’ COMPUTING OF A MARINE FLEET FOR AN
UNDERWATER PATROLLING MISSION

D. Balestrieri (a), G. Vaccaro (b), F. Lancia(b) , F. Portieri(a)

(a) INTECS S.p.A. – Traffic Control Division - Salita del Poggio Laurentino 7 – 00144 Roma (Italy) - www.intecs.it

(b) Università degli Studi Roma Tre – Dipartimento di Informatica e Automazione – Via della Vasca Navale 79 – 00146 –
Roma (Italy) - www.dia.uniroma3.it

(a)domenico.balestrieri@intecs.it, (b) giu.vaccaro@stud.uniroma3.it, (c) fra.lancia@stud.uniroma3.it,

(d)fabio.portieri@intecs.it

ABSTRACT
Nowadays, the hypothesis of using low cost
“unmanned” vehicles, to replace men into territorial
waters’ surveillance operations, is taking over. This
would allow few operators to patrol great sea areas,
reducing consequently costs of patrolling missions led
by human resources. Because of low autonomy of
robotic vehicles, compared with the autonomy of
normal vehicles, path’s planning algorithms are needed
to maximize the length of each path, respecting each
vehicle’s autonomy and the constraints due to the
vehicles’ features, revisits of sensible areas etc. etc. The
following article describes a heuristic approach to the
computing of these navigation plans.

Keywords: patrolling, optimization problem, path
planning, submarine vehicles.

1. INTRODUCTION

The main activities carried out by the Coast Guard,
are focused on improving the sailing security, the
protection of the marine environment and ensuring the
respect of National and International laws. For this
purpose, a great number of resources are involved in
daily coast patrolling operations, with consequently
high costs. To reduce these costs, joint missions with
other police teams are carried out. This is not always
enough to ensure sufficient surveillance, due to, for
example, a great number of coast’s Kilometers (e.g.
Italy has more than 8000 km of coasts). The risk is to
leave some areas “unvisited”, which might be
particularly sensible, for which the maritime safety
and/or the marine environment could be compromised.
This article is focused on the problem of a submarine
patrolling, or else the problem of patrolling sea sub-
areas located at different depths. This is an important
matter for what concerns the protection of marine
environments and the improvement of the sea security.

Using “unmanned” vehicles to support patrolling
operations would allow surveillance of great sea
extensions with very few operators, allowing the local
government, employed into monitoring of its territorial
waters, to exploit in an efficient way its own resources
of men and vehicles.

2. THE PATROLLING PROBLEM

2.1. A submarine sea area’s patrolling
The problem of a submarine sea area’s patrolling can be
defined as follows: “given a set of vehicles and an area,
the paths assigned to each vehicle must be calculated
taking into account that each point into the area would
be visited by at least a vehicle”.
Consequently, the following hypothesis can be
formulated:

1. Sailing autonomy: each vehicle has its own
sailing autonomy, which is the capacity of
patrolling a certain amount of miles, depending
on its fuel.

2. Area points: visiting some area points could be
seen as visiting some interesting sites, such as
buoys or strategic points, or else, given a
precise sea area, visiting it all. We assume that
vehicles have a 360 degrees sight of a certain
ray, depending by the sensor installed on each
vehicle.

3. Sea Strength: a point’s sea strength is
represented by an integer number between 0
and 9 which gives and information about the
sea state into that area, based upon the
Beaufort scale (i.e. 0=calm, 9=windstorm).
Each vehicle has a certain sea capacity, defined
by an integer number between 0 and 9 as well,
that indicates the maximum sea strength that
the hull can endure (i.e. a vehicle with sea
capacity C can visit a point having sea strength
F if C ≥ F).

4. Equipment: each vehicle is equipped with
particular tools and/or sensors. Some points of
the area may require vehicles equipped with a
certain tool (for example, it may be a weapon).

5. Revisiting sensitive points: some points of the
area may be considered more “sensitive” than
others, so that they require a revisit, for
example at defined time intervals, by at least a
vehicle.

6. Obstacles presence: some points might not be
patrolled because of the presence of
“obstacles” (i.e. islands, low backdrops, etc.
etc...)

7. Depth: each vehicle can travel at different
depths, considering its own depth constraint.
Each node of the sea selected area is located at
a different depth.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

45

The optimization problem of the patrolling of a
submarine sea area consists in searching for a “better”
solution, composed by a set of paths, in order to visit
the selected sea area fully, with the minimum time and
considering the hypothesis above.
It’s important to underline that the “best” solution (a
more “efficient” patrolling) may involve only some
available vehicles.

3. THE PATROLLING PROBLEM SEEN AS A
MTSP

3.1. Variants to the original problem
Solution of the patrolling problem can be reconducted
to the well-known mTSP in literature (multiple
Travelling Salesman Problem) (see Brummit and Stentz
(1996), Brummit and Stentz (1998), Yu et al. (2002),
Ryan et al. (1998). The mTSP consists of a
generalization of the Travelling Salesman Problem with
more than one salesman (see Mole et al. (1983), Laporte
et al. (1985), Toth and Vigo (2002)).
The classic mTSP formulation provides that the m
salesmen must visit each city only one time, with the
minimum possible “cost”.
In the specific case of the patrolling problem, the
following variants to the original formulation must be
considered:

• Multiple Deposits: more deposits exist, with a
certain number of salesmen dislocated into
each of them. The salesmen can return into
their own starting deposit after completing the
tour or return into a random deposit (the initial
number of salesmen must remain the same at
the end of the trip).

• Number of salesmen: the number of salesmen
can be represented by a limited variable or can
be a fixed number.

• Fixed cost: if the number of salesmen isn’t
fixed, then each salesman has usually a fixed
cost attributed, which has to be added to the
function cost whenever this salesman is
employed into the solution.

• Time Windows: some points must be visited
into determined time intervals, named time
windows. This is an important mTSP extension
and it’s named as Multiple Travelling
Salesman Problem with Time Windows
(mTSPTW) (see Macharis and Bontekoning
(2004), Wang and Regan (2002), Ruland and
Rodin (1997), Mitrovi´et al. (2004)).

• Other restrictions: these restrictions consist in
a particular constraint on a particular
equipment of the vehicle (salesman), which
visits a point, on the vehicle’s capacity to
sustain sea’s strength in that point, on the
maximum length of paths attributed to each
single vehicle, due to their autonomy and on
the presences of obstacles.

4. PROBLEM DEFINITION

Given :

• A graph G = (V,E) where V is a set of vertexes and
E a set of arcs with a specific “cost” connecting
vertexes;

• m, the number of salesmen (vehicles);

• deposits Di ג G from which salesmen must start

their trip;

• ॿ set of all possible configurations, or all possible

choices of m paths starting from and ending into
the assigned deposit and visiting once and only
once each one of all the other vertexes;

• ࢜ set of constraints;

• ॿ࢜ sub-set of the configurations respecting the

assigned constraints ࢜;

• f : x ג ॿ հ Թ cost function assigned to the problem

solution.

 Solving the patrolling problem consists in finding a

configuration x�ג ॿ which respects the constraints

and minimizes the total cost, or: x=min(f(x)) with x

 .ॿ࢜ ג

4.1. Graph construction
The set V of graph’s vertexes is built by coverage of the
free-space by a Voronoi diagram. Cells of the diagram
have a maximum ray compatible with the sensibility of
the sensor used for patrolling, installed on each vehicle.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

46

Figure 1: Voronoi Diagram

Vehicles and areas that have to be visited are considered
as points while the obstacles are modeled as polygons,
defined by their vertexes.
The set E is composed by all arcs of a complete graph
built with the V set of vertexes, where each arc of the
graph has an associated cost, equal to the Euclidean
distance of its vertices, considering their latitude,
longitude and depth.

4.2. Cost function

The cost function f :ॿ հ Թ is defined on the set ॿ of all

possible solutions and is computed as:

f(x) = ∑ [length (p) + penalty(p)]

 p�{paths of solution x}
with:

• length (p) = length of the path p (assigned to a
vehicle) and belonging to the solution x

• penalty(p) = sum of all penalties of path p

penalties are computed as follows:

• Penalty for vehicle’s autonomy

Autonomy is the maximum length of a path that a
vehicle could make. The penalty for a path’s autonomy
p is:
 penalty(p) = FMULT · [c(p) – cmax(p)]
 with:

− c(p) = length of path p
− cmax(p) = maximum length of p
− FMULT = empirical multiplicative factor

The algorithm will try to satisfy the constraint
considering high values of FMULT constant. But a too
high value of FMULT may cause the algorithm to stop
into a cost function’s local minima.

• Penalty for time windows
Revisiting of one or more vehicles on a site is
equivalent to define time windows (more or less
regular) on this site, which at least a vehicle must visit.
Time windows are attributed each one to a different
node with the same position, added to the set V of graph
G (i.e. if a node has to be visited twice, there could be

added to the map other two nodes into the same
position, but having different time windows). If a vertex
v belonging to a path p is associated to a time window
[t1v, t2v] (with t1v, t2v minimum and maximum visit
time), and the visit time on that node, following p, is
t(v), the related penalty is computed as:

penalty(p) = TMULT · [∑ windowPenalty(v,t1v,t2v)2]

 v�p
with:
windowPenalty (v,t1v,t2v) = 0 se t1v ≤ t(v) ≤ t2v
windowPenalty (v,t1v,t2v) = t(v) - t2v se t(v) > t2v
windowPenalty (v,t1v,t2v) = t1v – t(v) se t(v) < t1v

and TMULT empirical multiplicative factor.

• Sea Strength Penalty
Sea strength on a vertex v is defined as an integer
number s(v) between 0 and 9, and each vehicle m
sustain a maximum sea strength s(m). A vehicle having
strength s(m) can visit a site with strength s(v) if s(m) ≥
s(v).
Sea strength penalty of a path p is:

 penalty(p)=MMULT · (#nodes v s.a. s(v)> s(m))

with MMULT empirical multiplicative factor.

• Equipment Penalty
Some nodes might have the constraint that they could
be visited only by vehicles equipped with a particular
sensor or tool (or weapon).
The equipment penalty of a vehicle with a path p is
computed as follows:

penalty(p)=EMULT · (#nodes v s.a. m isn’t provided
with the right equipment required by v)

With EMULT empirical multiplicative factor.

• Penalty for long arcs
To avoid inserting long arcs into the final solution,
optimizing the length of each sub-path, a possible
choice is to associate a penalty if the distance between
two connected nodes into a path p is longer than a
certain length l, as 2*ray of the sensors equipped on
each vehicle.
The penalty for long arcs is as follows:

penalty(p)=LMULT· (#arcs e associated to vehicle m
s.a. l(e) > 2*ray of the sensors equipped on m).

With LMULT empirical multiplicative factor.

• Obstacles Penalty
A vehicle must necessarily avoid obstacles into the sea
area that needs patrolling: this has been made inserting
a certain penalty in case at least one of the arcs
belonging to the set of paths would go through one of
the obstacle’s sides.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

47

 The obstacles penalty is computed as:

penalty(p)=OMULT if at least an arc belonging to the
set of paths P goes through one of the obstacle’s sides.

With OMULT empirical multiplicative factor.

5. HEURISTIC APPROACH
The heuristic approach used to solve the patrolling
problem is the Simulated Annealing.
This algorithm is also called “meta-heuristic” and
consists into an extension of the classical local search.
Considering the local search, when a solution’s
neighborhood is explored, the only information owned
is the best current solution and the related cost function
value.

5.1. Simulated Annealing
This approach, used to solve the patrolling

problem, is inspired by the industrial process named
annealing, and it’s known in literature with the name of
Simulated Annealing (see Aarts and Korst (1989),
Dekkers and Aarts (1991), Romeijn and Smith (1994)).
While a liquid’s molecules tend to move freely at high
temperatures, if a temperature is lowered in a
sufficiently slow way, the molecules’ thermic mobility
is lost and they tend to form a pure crystal
corresponding to a minimum energy state.

The annealing is a thermic treatment used mostly
on steel and copper, the slower cooling we have, the
stabler structure we obtain. Similarly, the approach
tends to converge to an optimal solution (see Bélisl
(1992), Locatelli (1996), Locatelli (2000)) using this
heuristic and choosing a decreasing sequence of
temperatures, with a sufficiently slow ‘cooling’: as we
arrive to a minimum energy state through the physical
process, in the same way we obtain a solution (the
global optima) with a minimum cost function value,
using the annealing into optimization problems.

The peculiarity of Simulated Annealing is the
capacity to avoid local minima accepting also the
transitions that increase the value of cost function f.
Accepting configurations with a worse cost function is
the only way to escape from local minima.

The heuristic is articulated into the following steps:

1. A sequence of temperatures T0>T1>T2>… with

 Ti tending to 0 for i→∞ is fixed;
2. A rounded positive numbers sequence

 N0>N1>N2>… and an iterator j = 0
are fixed;

3. The initial solution is generated;
4. T = Tj and N = Nj, and an iterator i = 0 are set;
5. If i <= N go to Step 6., otherwise go to Step 9.
6. A new random solution x’ is generated (see

par. 5.2)
7. If f(x') < f(x) then x = x', otherwise x = x' with

a certain probability:

 p = e-[f(x') – f(x)] / T

8. i = i + 1 and the heuristic returns to Step 5.
9. j = j + 1 and the heuristic returns to Step 4.

5.2. Random generation of a solution
To generate a solution randomly, the idea is to start

from the last solution and choose randomly one of its
“transformations” listed below:

1. Move 1-0 (Relocate)
2. Move 1-1
3. Move 2-0 (Double relocate)
4. Move 2-1
5. Move Or-Opt
6. Move CROSS
7. Move 2-Opt

 Once a transformation to apply is found (Move),

the vehicle containing the first vertex used for the
exchange is chosen randomly. The other vertex (or
others) involved into the exchange are chosen into the
‘neighborhood’ of the first vertex.

The different transformations used by the algorithm

are:

1. Move 1-0 (Relocate): a vertex is moved into

another position of the same vehicle’s path, or
else into another vehicle’s path;

Figure 2: illustration of a “relocate” move

2. Move 1-1: a vertex into a vehicle’s path is

exchanged with a vertex contained into another
vehicle’s path;

Figure 3: illustration of a move 1-1

3. Move 2-0 (Double relocate): a couple of near

vertexes is moved into another position of the
same vehicle’s path or into another vehicle’s
path;

Figure 4: illustration of a “double relocate” move

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

48

4. Move 2-1: a couple of near vertexes is
exchanged with a vertex contained into another
vehicle’s path;

Figure 5: illustration of a move 2-1

5. Move OrOpt: two vertexes belonging to the

same path swap their neighbors, maintaining
all the rest unaltered;

Figure 6: illustration of a move OrOpt

6. Move CROSS: two salesmen exchange a sub-

path. This kind of move contains also the
relocate ones and the exchanges between nodes
of different paths (Move 1-1 and 2-1).

 Figure 7: illustration of a move CROSS

7. Move 2-Opt: Two vehicles exchange their

paths, starting from two vertexes. Two arcs get
removed (i.e. (i, j) and (h, k)) and two new arcs
are added, (i, k) and (h, j). This is possible if
and only if the two vehicles involved end their
routes into the same deposit.

Figure 8: illustration of the move 2-Opt

6. EXPRIMENTAL RESULTS
Here below are shown some results taken from the
application of this algorithm, using vehicles having the
same maximum velocity but with different autonomy.

Each point of the area is defined by three
coordinates:

• x = longitude
• y = latitude
• z = depth

Figure 9: 3D representation of a path

The following cases have been considered:

1. case without any particular point into the sea

area (so no particular constraints on sea
strength, vehicle’s equipment, nor revisits of
sensible points)

2. case with all the constraints listed before.

6.1. Case without constraints
In Figure 10 we may observe paths attributed to each
vehicle into the selected submarine sea area: each path
is represented by a set of arcs colored differently, each
node is colored in grey, except for the deposits, each
one having the same color of the path that starts from
there. In this example, each node is located at a different
depth.

Figure 10: Case without constraints 2D

Figure 11: Case without constraints 3D

Table 1: Results without constraints

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

49

Vehicle Used Color Autonomy
(Km)

Vel.
(Km/h)

Path Length
(Km)

1 YES RED 233,81 10 0,28

2 YES BLUE 306,05 10 28,9

3 YES CYAN 493,55 10 437,71

4 NO YELLOW 86,91 10 0

5 NO WHITE 166,3 10 0

6 YES GREY 497,33 10 176,5

7 YES GREEN 281,19 10 230,04

Total number of vehicles: 7

Vehicles involved: 5

Solution cost: 873.42Km

It’s noticeable that the selected sea area is completely
visited using only 5 among the 7 vehicles available.

6.2. Case with constraints
In Figure 11 we may observe paths attributed to each
vehicle available into the selected submarine sea area,
considering all the set of constraints described before:
nodes without any particular constraint are represented
in grey, nodes with revisits are colored in green, the
ones with a certain sea strength are colored in red,
while the ones needing a particular equipment are
represented in yellow. In this example, each node is
located at a different depth.

Figure 12: Case with constraints 2D

 Figure 14: Case with constraints 3D

Table 2: Results with constraints

Vehicle Used Color Autonom
y (Km)

Vel.
(Km/h)

Sea
Strength Equip.

Path
Length
(Km)

1 YES RED 430 10 NO NO 201,15

2 YES BLUE 449,8 10 NO YES 3,85

3 YES CYAN 431,25 10 YES YES 347,68

4 YES YELLOW 176,43 10 YES NO 0,34

5 YES WHITE 467,92 10 NO YES 407,15

6 NO GREY 376,05 10 NO YES 0

7 NO GREEN 318 10 NO NO 0

Total number of vehicles: 7

Vehicles involved: 5

Solution cost: 960.19Km

It’s noticeable that the selected sea area is completely
visited using 5 among the 7 vehicles available.

Vehicle 3 (in cyan), is the only one able to visit sites
with high strength of the sea and sites that apply for
special equipment.

REFERENCES
Aarts E.H.L., Korst J. (1989). Simulated Annealing and

Boltzmann Machines. J. Wiley & Sons.
Bélisle C.J.P. (1992). Convergence theorems for a class

of simulated annealing algorithms on Rd. Journal
of Applied Probability, 29, pp. 885–892.

Brummit B, Stentz A. (1996). Dynamic mission
planning for multiple mobile robots. Proceedings
of the IEEE international conference on robotics
and automation.

Brummit B, Stentz A. (1998). GRAMMPS: a
generalized mission planner for multiple mobile
robots. Proceedings of the IEEE international
conference on robotics and automation.

Dekkers A., Aarts E., (1991). Global optimization and
simulated annealing. Mathematical Programming,
 50, pp. 367–393.

Laporte G, Nobert Y, Desrochers M. (1985). Optimal
routing under capacity and distance restrictions.
Operations Research, 33(5), pp. 1050–73.

Locatelli M., (1996). Convergence properties of
simulated annealing for continuous global
optimization. Journal of Applied Probability, 33,
pp.1127–1140.

Locatelli, M. (2000). Simulated annealing algorithms
for continuous global optimization: convergence
 conditions. Journal of Optimization Theory
and Applications, 104, pp. 121–133.

Macharis C, Bontekoning YM. (2004). Opportunities
for OR in intermodal freight transport research: a
review. European Journal of Operational Research
153, pp. 400–16.

Mitrovi´c-Mini´c S, Krishnamurti R, Laporte G. (2004).
Double-horizon based heuristics for the dynamic
pickup and delivery problem with time windows.
Transportation Research, 28(8), pp. 669–85.

Mole RH, Johnson DG, Wells K. (1983). Combinatorial
analysis for route first-cluster second vehicle
routing. Omega, 11(5), pp.507–12.

 Romeijn H.E, Smith R.L. (1994). Simulated annealing
for constrained global optimization. Journal of
Global Optimization, 5(2), pp. 101–126.

Ruland KS, Rodin EY. (1997). The pickup and delivery
problem. Computers and Mathematics with
Applications, 33(12), pp. 1–13.

Ryan, J.L., Bailey, T.G., Moore, J.T., Carlton, W.B.,
(1998). Reactive Tabu search in unmanned aerial

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

50

reconnaissance simulations. Proceedings of the
1998 winter simulation conference, vol.1, pp.
873–9.

Toth P, Vigo D. (2002). Branch-and-bound algorithms
for the capacitated VRP. In: Paolo Toth, Daniele
Vigo, editors. The vehicle routing problem. SIAM
Monographs on Discrete Mathematics and
Applications, Philadelphia, pp. 29–51.

Wang X, Regan AC. (2002). Local truckload pickup
and delivery with hard time window constraints.
Transportation Research Part B, 36, pp. 97–112.

Yu Z, Jinhai L, Guochang G, Rubo Z, Haiyan Y,
(2002). An implementation of evolutionary
computation for path planning of cooperative
mobile robots. Proceedings of the fourth world
congress on intelligent control and automation,
vol. 3, p. 1798–802.

Proceedings of the International Defense and Homeland Security Simulation Workshop 2012
ISBN 978-88-97999-08-9; Bruzzone, Buck, Longo, Sokolowski and Sottilare Eds.

51

