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ABSTRACT 
The present paper provides a comprehensive review 
about the main concepts on situation awareness for 
critical infrastructure. The issues related to models and 
architectures for data fusion and situation awareness are 
reported in the framework of Critical Infrastructure 
Protection. 
Both data fusion and situation swareness have been 
developed in Critical Infrastructure field to merge and 
integrate data from several heterogeneous sensors. 
Since Critical Infrastructures are interconnected, the 
integration of sensor data is mandatory to avoid or 
mitigate risk of cascading and domino effects. This 
integration requires the cooperative signal processing of 
a federation of critical infrastructures. 

 
Keywords: Situation awareness, Critical Infrastructure 
Protection, Distributed DF, Multi Agent System 

 
1. INTRODUCTION 
Situational Awareness (SA) refers to the ability to 
observe, assimilate and make predictions about relevant 
elements and attributes of an environment in order to 
provide a robust survival. SA points at knowing what is 
going on around you. In this perspective, the key idea is 
to exploit the knowledge acquired in the past to 
identify, analyze and understand the actual situation. 
Moreover Sa is able to forecast the evolution of a 
phenomena and evaluate risks. The ability to predict or 
model and visualize how the circumstances of a pending 
or evolving emergency may change over specific times 
allows emergency managers to allocate resources to 
priority areas before further damage or loss of life 
occurs. An effective management of crisis is essential 
when the emergency occur on a Critical Infrastructure 
(CI). 

Societies are increasingly dependent on a set of 
products and services including the CIs, i.e. an asset, 
system or part thereof located in Member States which 
is essential for the maintenance of vital societal 
functions, health, safety, security, economic or social 
well-being of people, and the disruption or destruction 
of which would have a significant impact in a Member 
State as a result of the failure to maintain those 

functions. CIs comprise essential components of 
industry, energy generation, security, defense, 
transportation and public services. In this sense, an 
unexpected event on CI has serious consequences to 
citizens and the society as a whole. The emergency 
management on a CI should have full situational 
awareness on the state of CI itself and on the 
responsibilities to protect them. The main concern with 
the CI is their growing complexity. This is partially 
caused by their growing interconnectedness, leading to 
infrastructural interdependencies with unpredictable 
consequences and risks. To this end, the integration of 
sensor data to avoid or mitigate risk due to cascading 
and domino effects is mandatory. This process of 
combining data to refine state estimates and predictions 
is known as Data Fusion (DF).  

The models and architectures to describe the SA 
context are recalled in Sec. 2. Section 3 presents a brief 
background on several computational intelligence 
techniques applied in CIs domain.  A survey on 
principal concepts and techniques for SA in CIs are also 
reported. Finally, some concluding remarks are drawn.  

 
2. MODELS AND ARCHITECTURE FOR 

SITUATION AWARENESS 
To describe DF systems, we first highlight the main 
differences between (Elmenreich 2001):  

• Models are the description of a set of processes. 
This set of processes should be undertaken 
before the system may be regarded as fully 
operational.  

• Architectures are the physical structure of the 
system. Particular attention is devoted to the 
implementation for information and data 
communication.  

• Frameworks are a set of axioms and a reasoning 
system for manipulating entities. Examples of 
frameworks currently used in DF are 
probabilistic reasoning, possibility reasoning 
and evidential reasoning 
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2.1. Models 
In the following some models proposed in literature are 
reported (Durrant-Whyte and Henderson 2008). 
 The Intelligence Cycle involves both information 
processing and information fusion. It is a conceptual 
model showing how intelligence operations are 
conducted. 

 
Figure 1: The Intelligence Cycle Model 

 
It consists of four phases:  

• Collection assets how electronic sensors or 
human derived sources are deployed to obtain 
raw intelligence data.  

• Collation describes how associated intelligence 
reports are correlated and brought together.  

• Evaluation explains how the collated 
intelligence reports are fused and analyzed.  

• Dissemination clarifies how the fused 
intelligence is distributed to the users and who 
use the information to make decisions 
regarding their own actions and the required 
deployment of further collection assets. 

 
The Joint Directors of Laboratories Model (JDL) 

is a layered hierarchical model that identifies fusion 
processes, processing functions, and processing 
techniques to accomplish the primary DF functions 
(Hall and Llinas 2008). 

 
Figure 2: The Joint Directors of Laboratories (JDL) 

Model 

The elements of the model are described in the 
following:  

• Sources provide information from a variety of 
data sources, like sensors, a priori information, 
databases, human input.  

• Source preprocessing (Level 0): The task of 
this element is to reduce the processing load of 
the fusion processes by prescreening and 
allocating data to appropriate processes.  

• Object refinement (Level 1): This level 
performs data alignment (transformation of 

data to a consistent reference frame and units), 
association (using correlation methods), 
tracking actual and future positions of objects, 
and identification using classification methods. 

• Situation refinement (Level 2): The situation 
refinement attempts to find a contextual 
description of the relationship between objects 
and observed events.  

• Threat refinement (Level 3): This processing 
level tries to draw inferences about 
vulnerabilities and opportunities for operation 
on the basis of a priori knowledge and 
predictions about the future situation. 

• Process refinement (Level 4): Level 4 is a meta 
process that monitors system performance and 
reallocates sensor and sources to achieve 
particular mission goals.  

• Database management system: The task of the 
database management system is to monitor, 
evaluate, add, update, and provide information 
for the fusion processes.  

• Man-machine interaction: This part provides 
an interface for human input and 
communication of fusion results to operators 
and users. 
 

 The Boyd control cycle or OODA loop possesses 
four phases as shown in Figure 3 (Shahbazian, Blodgett, 
and Labbé 2001). 

 
Figure 3: The Boyd (or OODA) Loop 

 
• Observe: This stage is broadly comparable to 

source pre-processing in the JDL model (level 
0) and part of the collection phase of the 
intelligence cycle.  

• Orient: This stage encompasses the functions 
of the levels 1, 2 and 3 of the JDL model. It 
also includes the structured elements of 
collection and the collation phases of the 
intelligence cycle.  

• Act: has no direct analogue in the JDL model 
and is the only model that explicitly closes the 
loop by taking account of the effect of 
decisions in the real world.  

• Decide: This stage includes JDL level 4 
(process refinement and resource management) 
and the dissemination activities of the 
intelligence community. It also inclues 
planning. 
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A representation of Waterfall Model is shown in Fig. 4. 
It can be seen from this figure that the flow of data 
operates from the data level to the decision making 
level. The sensor system is continuously updated with 
feedback information arriving from the decision-making 
module. The feedback element advises the multi-sensor 
system on re-calibration, re-configuration and data 
gathering aspects 

 
Figure 4: The Waterfall DF Process Model 

 
The Dasaranthy Model is based on fusion 

functions rather than tasks and it may therefore be 
incorporated in every fusion activities. Many 
researchers have identified the three main levels of 
abstraction during the DF process as being: 
 

• Decisions symbols or belief values  
• Features or intermediate-level information  
• Data or more specifically sensor data  

 
Bedworth and O’Brien have presented the 

Omnibus Model in 1999. Figure 5 depicts the 
architecture of the Omnibus Model. It defines a process 
order and it makes explicit the cyclic nature. The model 
is intended to be used multiple times in the same 
application recursively at two different levels of 
abstraction. First, the model is used to characterize and 
structure the overall system. Second, the same structure 
is used to model the single subtasks of the system. 
 

 
Figure 5: The Omnibus Model: A Unified DF Process 

Model 
 

The Extendend OODA Model for DF systems 
developed at Lockheed Martin Canada (LMC) 
synthesizes some of the useful features of the models 
described previously, moreover provides a mechanism 
for multiple concurrent and potentially interacting DF 

processes. The details of the Extended OODA model 
are depicted in Fig. 6. 
 

 
Figure 6: The Extended OODA Model for DF 

A system using DF for decision-making is decomposed 
into a meaningful set of high-level functions (Figure 6 
shows a set of N functions). These functions are 
examined in terms of the Observe, Orient, Decide, and 
Act decision loop that constitute the OODA model. 
 

Endsley’s Model defines SA as a state of 
knowledge resulting from a process. Situation 
Awareness is formally defined as the perception of the 
elements in the environment within a volume of time 
and space, the comprehension of their meaning and 
projection of their status in the near future. The model 
proposed by Endsley is graphically described as 
follows:  

 
Figure 7: Endsley's Situation Awareness Model 

The core portion follows Endsley’s proposition that SA 
has three levels of mental representation: 

 
• Level 1 SA - Perception of the elements in the 

environment. The first step in achieving SA is 
the perception of the status, attributes, and 
dynamics of relevant elements in the 
environment.  

• Level 2 SA - Comprehension of the current 
situation. Comprehension of the situation is 
based on a synthesis of disjointed Level 1 
elements.  

• Level 3 SA - Projection of future status  is the 
ability to project the future actions of the 
elements in the environment, at least in the 
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near future. It is the third and highest level of 
situation awareness.  

 
The Boyd Control Loop was first used for 

modeling the military command process, but has since 
been widely used for DF. The Boyd and JDL models 
show distinct similarities, although the Boyd model 
makes the iterative nature of the problem more explicit. 
 The Waterfall Model emphasizes the processing 
functions on the lower levels. The stages relate to the 
levels 0, 1, 2, and 3 of the JDL model as follows: 
sensing and signal processing correspond to source 
preprocessing (level 0), feature extraction and pattern 
processing match object refinement (level 1), situation 
assessment is similar to situation refinement (level 2), 
and decision making corresponds to threat refinement 
(level 3). 

In literature the JDL model is adopted to solve the 
SA problem. In fact, the JDL model is a suitable 
manner to model, describe and understand various 
activities in the SA community. Although the JDL 
provides a functional model for the DF process, it does 
not model it from a human perspective. Endsley 
provides an alternative to the JDL model that addresses 
SA from this viewpoint. 
 
2.1.1. Architectures 
Different architecture has been proposed in literature for 
DF and SA (Salerno 2001). 

 
Centralized DF (CDF) is characterized by a 

hierarchy of nodes: all information is passed up the 
hierarchy to a centralized fusion node. An example of 
this kind of architecture is given in the Fig. 8. 

 
Figure 8: An Example of a Centralized DF system. The 
central node, C, receives information from three sensor 
nodes, N1, N2 and N3. It fuses information about the 

tracking object, thereafter it propagates back the results 
of DF to every node (including N2). 

Unfortunately, this kind of architecture presents several 
disadvantages. For these reasons it is less used. Indeed, 

 
• It imposes a latency on the availability of the 

fused picture at the lower level nodes; 
• It also imposes a single point of failure in the 

system: if the fusion node is lost or loses 
communications, the overall situation 
awareness of the system is compromised; 

• It limits the ability of the individual 
participants to operate independently or as part 
of a much smaller group; 

• It requires significant communications 
bandwidth.  

 
Decentralized DF (DDF) architectures are fully 

decentralized structures, without any central processor 
and/or common communication system. In this 
architecture, nodes can operate in a fully autonomous 
fashion, only coordinating through the anonymous 
communication information. Referring to Fig. 9, a DDF 
system consists of a network of agents, each one having 
its own processing capabilities, not requiring any central 
fusion or central communication facility.  

 
Figure 9: An example of Decentralized DF System. The 

agents communicate information among each other 

A DDF system is characterized by three constraints: 
 
1. There is no single central fusion center; 
2. There is no common communication facility; 
3. Sensor nodes do not have any global 

knowledge of sensor network topology. 
 
The above constraints provide a number of 

important characteristics for DDF systems. 
 

Hierarchical DF (HDF) architecture is a hybrid 
architecture mixing together the centralized and 
decentralized architectures. 
 

 
Figure 10: An Example of Hierarchical DF System. The 

agents are grouped in cliques and they share 
information about the environment with their neighbors. 
Communication with other groups ensures the spread of 

knowledge within all nodes. 
 
In the hierarchical architecture there are often 

several hierarchical levels where the top level contains a 
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single centralized fusion node and last level is made up 
of several decentralized (local) fusion nodes. Each local 
fusion node receives inputs either from a small group of 
sensors or from an individual sensor. The hierarchical 
approach has been employed in a number of DF 
systems and has resulted in a variety of useful 
algorithms for combining information at different levels 
of a hierarchical structure.  
 
 
3. SITUATION AWARENESS IN 

INTERDEPENDENT SYSTEMS 
Modern CI systems utilize intelligent embedded 
devices, communication capability, and distributed 
computing to streamline and fortify their operation 
(Kokar, Matheus and Baclawski 2009). Identifying, 
understanding, and analyzing such interdependencies 
are significant challenges (Pederson, Dudenhoeffer, 
Hartley and Permann 2006; Rigole and Deconinck, 
2006). These challenges are greatly magnified by the 
breadth and complexity of transnational critical 
infrastructures. Examples include smart grids and 
intelligent water distribution networks. The increasing 
prevalence and complexity of this intelligent control 
brings its dependability into question. In this section we 
present several of the most established methodologies 
for the aggregation of multiple information sources 
necessary to describe a situational awareness problem 
for CI system. 

Evidence Theory: Dempster-Shafer Theory (DST) 
is a mathematical theory of evidence. In a finite discrete 
space, Dempster-Shafer theory can be interpreted as a 
generalization of probability theory where probabilities 
are assigned to sets as opposed to mutually exclusive 
singletons. In traditional probability theory, evidence is 
associated with only one possible event. It has 
uncertainty management and inference mechanisms 
analogous to our human reasoning process. 

It is based on two ideas: the idea of obtaining 
degrees of belief for one question from subjective 
probabilities for a related question, and Dempster’s rule 
for combining such degrees of belief when they are 
based on independent items of evidence (Rakowsky 
2007). Principally we can define three important 
functions in Dempster-Shafer theory: 

• the basic probability assignment function (bpa) 
defines a mapping m of the power set to the 
interval between 0 and 1, where the bpa of the 
null set is 0 and the summation of the bpa’s of 
all the subsets of the power set is 1. 
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where P(X) represents the power set of X,  is the 

null set, and A is a set in the power set (A P(X)).  

• the Belief function (Bel) is defined as the sum 
of all the basic probability assignments of the 
proper subsets (B) of the set of interest (A) 

(B A) 

  )(=)(
|

BmABel
ABB

∑
⊆

 

• the Plausibility function (Pl) is the sum of all 
the basic probability assignments of the sets 
(B) that intersect the set of interest (A) 

(B∩A≠ ) 
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Hidden Markov Model is a technique suitable for 
situation awareness (Thyagaraju 2010). SA is a process 
that comes to a conclusion based on the events that take 
place over a period of time across a wide area. Hence, 
since the situational awareness is achieved based on the 
sequence of events observed, Hidden Markov model 
(HMM) is ideally suited. The formal definition of a 
HMM consists of a compact notation to indicate the 
complete parameter set of the model:  

),,(= πλ BA  
where: 
A={aij} is the transition array, storing the 

probability of state j following state i  
NjisqsqPa itjtij ≤≤− ,1),=|=(= 1  

B={bj(k)} is the observation array, storing the 
probability of observation k being produced from the 
state j, independent of t 

 
MkNjsqvxPkb jtktj ≤≤≤≤ 1,1),=|=(=)(  

π=πi is the initial state distribution  

,1),=(= 1 NisqP ii ≤≤π  
The model il based on two assumptions: 
Markov assumption: the current state is dependent 

only on the previous state, this represents the memory 
of the model:  
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Independence assumption: the output observation 

at time t is dependent only on the current state, it is 
independent of previous observations and states: 

)|(=),|( 1
1

1 tt
tt

t qoPqooP −  
There are three fundamental problems that we can 

solve using HMMs: 
 
Evaluation: Given the observation sequence 

O=O1O2 OT and a model λ=(A,B,π), how do we 

efficiently compute P(O|λ), the probability of the 
observation sequence?  

Decoding: Given the observation sequence 

O=O1O2 OT and the model λ=(A,B,π), how do we 

choose a corresponding optimal state sequence 

Q=q1q2 qT (i.e., the best "explains" the observations)? 

Learning: How to maximize P(O|λ) by the model 
parameter λ=(A,B,π) (transitional probabilities, 
observation probabilities, initial probabilities))?   

 
Artificial Neural Network (ANN) constitutes a 

well-established computational model, which is inspired 
by the biological neural system (Yao and Islam, 2008). 
A set of neurons or processing elements, interconnected 
by a network with a certain topology, has limited or 
local computation capability. The underlying idea is to 
train the network by a suitable set of known inputs and 
associated outputs. Thereafter, the trained network, in a 
“black-box” perspective, evaluates the function. 
Formally, an Artificial Neural Network can be defined 
as follow:  

Definition 1 ANN is a network of n interconnected 
neurons described by a directed graph G={V,ξ,W} 

where V={1, ,n} is the set of nodes/neurons and 

ξξ={eij} V×V is the set of links; the weight of the link 

eij is described by the entry wij of the adjacency matrix 
W .  

The structure of an ANN is typically composed by 
four sets:  

• The set of processing units or neurons; 
• The weighted links between the processing 

units; 
• The activation rule, that converts the neuron’s 

inputs into its outputs; 
• The learning mechanisms to adjust the 

weights. 
 
The focus is on the learning procedure used to train 

the ANN. Several methodologies are used, according to 
a supervised or unsupervised learning approach. 

 
Agent-based Modeling A new emerging modeling 

paradigms is Multi Agent Systems (Dianne, Barton and 
Stamber 2000). These agent-based systems try to tackle 
a variety of complex problems using a fully distributed, 
bottom-up approach using a society of autonomous, 
interconnected, intelligent agents. Agent-based models 
are frequently used in interdependency and 
infrastructure analysis. Infrastructure or physical 
components are modeled as agents, allowing analysis of 
the operational characteristics and physical states of 
infrastructure. The agents are able to capture rational 
and non-rational behavior. We can define an agent as  

 
Definition 2 An autonomous agent is a system 

situated within and a part of an environment that senses 
that environment and acts on it, over time, in pursuit of 
its own agenda and so as to affect what it senses in the 
future. 

 
A CI is characterized by its location, its behaviour, 

interaction capabilities and its internal state. Then a CI 
can be modeled as an autonomous agent. The system 
composed by interdependent CI can be modeled as 
interacting agents cooperating and/or competing to 
realize a common or an individual goal. 

Interactions between agents are the following:  
• Agents have the ability to co-operate or to act 

against the interest of other agents  
• Agents can interact whilst having different 

level of information about each other ; 
• Agents may interact in singular encounters, or 

their interactions and negotiations may take 
place over multiple rounds of engagement; 

• Decisions and actions of agents can be reached 
simultaneously, or can occur sequentially. 

 
4. CONCLUSION 
 
As we have seen there is a growing interest in critical 
infrastructure protection, situation awareness, and the 
risks related to the increasing interconnection of these 
infrastructures. To assess these risks new modeling and 
simulation tools are needed; many modeling 
frameworks have been proposed in the recent years. 
This paper proposes a descriptive survey on this great 
variety of approaches, considering both high-level 
macroscopic models and microscopic models. These 
two different perspectives meet in the agent-based 
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approach that seems to be a promising technique, even 
if its practical use in the field of critical infrastructures 
is yet to be proven.  In the field of SA for CI the 
techniques adopted should be considering the “man in 
the loop” problem, by modeling reasoning about 
ignorance, spatial-temporal reasoning capabilities, and 
social ability for acquiring information, hence HMM, 
ANN, and Evidence Theory seems to be suitable 
approaches.  
 According with these remarks, future work will 
address a theoretical foundation of situation awareness 
and its measurement based on dynamic decision 
networks and information value theory. 
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