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ABSTRACT 
In this paper a framework for merging clashing 
information is introduced based on the Hegelsmann and 
Krause opinion dynamics model, which represents the 
social behavior of humans taking decisions together. 
Such a model differs from traditional consensus models, 
since the group of agents tends to distribute the opinions 
into several clusters. With respect to the original model, 
where the agents were influenced by the estimations of 
the others provided that their difference in opinion was 
smaller than a global parameter, in this paper a different 
value of reliability is associated to each piece of 
information. In this way it is possible to implement an 
assessment framework for the criticality of the situation 
in a critical infrastructure or homeland security scenario 
based on several clashing information, taking also into 
account the reliability of the source. 
The result is a framework able to suitably combine 
different pieces of information, each with a given 
reliability in order to derive the most likely value (i.e., 
the opinion that is reached by the greatest fraction of 
agents), by resorting to an analogy with human decision 
making dynamics. 
Finally the possibility to apply the framework in a 
distributed fashion is investigated, analyzing different 
complex network topologies. 

 
Keywords: Situation Assessment, Opinion Dynamics, 
Critical Infrastructures, Distributed Agent Based 
Systems. 

 
1. INTRODUCTION 
In the literature the characterization of the behavior of 
interacting agents that cooperate in order to reach an 
agreement has been widely investigated (Olfati-Saber 
et. al., 2007). The interaction among the agents is 
usually described by means of a fixed or varying 
network topology encoding the communication 
infrastructure; in this way it is possible to describe the 
interaction arising among entities such as in multi-robot 
systems or in sensor networks. While most of the 
studies in the literature (Olfati-Saber et. al., 2007) 
provide methodologies for the distributed averaging of 
several opinions or data, inspecting the conditions that 
lead to the actual average, in real contexts involving 
humans it is quite frequent to notice a clusterization of 
opinions (Groot, 1974; Leherer, 1975).  

A similar behavior is expected when the criticality 
of a given critical infrastructure or homeland security 

scenario is evaluated, since there is the possibility to 
have spoofed/fake information, diffused by malicious 
attackers in order to underestimate/overestimate the 
actual ongoing situation.  Recently, dynamic models 
representing such behavior, namely Opinion Dynamics 
models, gained momentum rapidly. Within such 
frameworks, as in consensus models, agents are 
assumed to interact in order to reach an agreement on 
their opinion. The peculiarity of these approaches is 
related to the topological structure of the agents 
interaction which is defined by the closeness in their 
points of view. Indeed, when studying this class of 
problems, it is reasonable to consider that an agreement 
between two agents may take place only if their 
opinions are sufficiently close to each other. The 
question arising is whether the agents will converge to a 
shared opinion or split into clusters. The group of 
agents can be very small, thus modeling the decision 
process of a judgment court or a team of experts, or can 
be very vast, thus representing the whole population of 
a country. In both cases it is interesting to model the 
process by which the opinion of the different 
individuals may converge to a common value or, 
conversely, these opinions may become fragmented, 
thus dividing the agents into clusters. In the literature 
several opinion dynamics models have been proposed 
(Groot, 1974; Leherer, 1975; French, 1956; Chatterjee 
and Seneta, 1977; Hegselmann and Krause, 2002). 
Among the others, the Hegelsman-Krause Model (HK), 
first introduced in (Hegselmann and Krause, 2002), and 
then further investigated in (Lorenz J., 2006; 
Mirtabatabaei and Bullo, 2011; Kurza and Rambaua, 
2010; Constantin Morarescu and Girard, 2010;Blondel 
et al., 2009; Gasparri and Oliva , 2012; Oliva et. al., 
2012; Oliva, 2012) is the most widely studied. It relies 
on the assumption that the opinion of each agent can be 
represented by means of a real value, thus modeling a 
scoring or a vote.  In this paper, the Hegelsmann-Krause 
opinion dynamics model, introduced to model the social 
behavior of humans taking decisions together, is 
adopted as a framework for the merging of clashing 
information, each characterized by a reliability value. 
To this end a set of agents, each holding an initial 
opinion, is considered and it is assumed that the single 
agent is influenced by the values of the others, 
depending on how close their opinions are (e.g., 
depending on the reliability). In order to obtain such 
result, the original HK model is slightly modified, 
considering a reliability value for each agent, rather 
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than a global parameter.  Specifically, the modified 
model assumes that an agent will not influence another 
one if they have very distant opinions, unless its 
reliability is very high; conversely, agents with close 
opinions will be likely to influence each other unless 
their reliability is remarkably small.  The result is a 
sophisticated framework for the composition of 
clashing opinions, where each agent is characterized by 
a reliability value; the opinions of the agents will split 
during the evolution of the system, leading to several 
clusters of opinion, each characterized by the number of 
agents composing the cluster.  The idea, therefore, is to 
select the opinion of the cluster with higher cardinality 
as the most likely estimate of the group of agents (i.e., 
the resulting merged value).  A crucial enhancement of 
such a methodology is how to let a sensor network 
perform a distributed agreement without resorting to a 
central processing unit (e.g. SCADA system). This 
would indeed contribute to increase the local awareness 
of smart equipment distributed within the field of 
critical infrastructures such as power grids or 
telecommunication networks. The underlying idea, in 
this case is to consider agents with local computational 
capability, able to interact with their neighbors 
according to a network topology and to exchange their 
opinions with such neighbors. Hence, in order to 
provide a distributed decision algorithm, the proposed 
model is endowed with a network topology, showing 
some simulation results depending on particular 
complex network topologies.   

The paper is organized as follows: after an overview 
of the Hegelsman-Krause Opinion Dynamics Model, 
the proposed extension is discussed, as well as the 
application of the framework in a distributed fashion; 
finally some conclusive remarks are collected.  
 
2. H-K OPINION DYNAMICS MODEL 
Let a set of N agents, each with an initial opinion, that 
interact mutually, influencing their points of view. In 
the Hegelsman-Krause (HK) model the agent’s opinion 
is represented by real numbers. This allows to model 
the behavior of a team of experts that have to reach 
consensus on the magnitude of a given phenomenon, 
e.g., the expected economic loss in a given nation, or to 
decide a scoring, e.g., for a project funded by an 
institution.  The key idea of the HK model is that an 
agent is not completely influenced by the opinions of 
the others, nor completely indifferent. This behavior can 
be obtained by letting each agent take into account the 
other agents standpoint to a certain extent while forming 
its own opinion. This implies that agents with 
completely different opinions will not influence each 
other, while some sort of mediation will occur among 
agents whose opinions are close enough.  This process, 
which is iterated several times (e.g., voting sessions), 
can be described by means of a discrete-time model. Let 
zi (k)∈ℜ  be the opinion of i-th agent at time step k and 

let z(k) = [zi (k),L, zn(k)]Tbe the vector of the opinions of 
all the agents. The i-th agent will be influenced by 

opinions that differ from his own no more than a given 
confidence level ε ≥ 0 . Hence the neighborhood of an 
agent for each time step k can be defined as:  

 
Ni (k) = j ∈ 1,� ,N{ } : | zj (k)− zi (k) |≤ε{ } (1)

 
 
Note that, at each step k, Ni(k) contains the i-th agent 
itself. This models the fact that each agent takes into 
account also its current opinion to form a new one.  The 
last ingredient of the model is the opinion influence 
mechanism, that is the average of the opinions in Ni(k) 
for each agent i. Intuitively, the reader may expect that, 
iterating the average of the opinions, the agents will 
rapidly reach a consensus. Unfortunately, the HK model 
has a much more complex behavior.  The HK dynamic 
model is in the form:  
 
z(k+1) = A(z(k))z(k), z(0)= z0 (2)

 
 
Where A(z(k)) is the time-varying (actually state-
dependent) n x n adjacency matrix whose entries 
aij (k) =1/ |Ni (k) |if j ∈ Ni (k) and aij (k) = 0otherwise, 
where |Ni (k) |is the cardinality of Ni (k). An important 
aspect of this model is the nature of the initial opinion 
profiles. Two different classes are considered in the 
literature (Hegselmann and Krause, 2002; Mirtabatabaei 
and Bullo, 2011), that is: the equidistant profile, 
where zi (0)= (i −1) / (n−1)with zi (0)∈ [0,1]; the  
random profile, where the opinions are uniformly 
distributed within [0,1]. 
Several works can be found in the literature, which 
attempt to characterize the properties of the HK model. 
In (Hegselmann and Krause, 2002) it is conjectured that 
for every confidence level ε there must be a number of 
agents n such that the equidistant profile leads to 
consensus (i.e., a single shared opinion for all the 
agents), while in (Mirtabatabaei and Bullo, 2011) it is 
conjectured that, for any initial opinion profile, there 
exists a finite time after which the topology underlying 
the A(z(k)) matrix (i.e., the structure of the mutual 
influence among agents) remains fixed. In (Blondel et 
al., 2009) it is proven that, during the evolution of the 
system, the order of the opinions is preserved, that is 
zi (0)≤ zj (0)⇒ zi (k)≤ zj (k) for all k. Moreover it is 
proved that, if the initial opinion profile is sorted, the 
smallest opinion z1(k) is nondecreasing with time and 
the largest opinion zn(k) is non increasing with time. 
Clearly at any step k if | zi (k)− zi+1(k) | >ε this 
remains true for any subsequent step, and the system 
splits into two independent subsystems. In (Dittmer, 
2001; Lorenz, 2005) the stability of the dynamical 
model is investigated. In particular the fact the system 
converges to a steady opinion profile in finite time is 
proven in (Blondel et al., 2009). However, the fact the 
system might converge to a common opinion or split 
into clusters is still under investigation.  Experimental 
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results suggest that the number of clusters tends to 
increase linearly with ε , and indeed the inter-cluster 
distance appears to be bounded by ε  (although with 
irregularities for a small subset of values of  ε ), 
although a formal proof of such behavior is yet to be 
provided.  

Figure 1 shows an example of result of the HK 
model with n=100 agents, for different values of the 
parameter ε ; clearly the number of clusters tends to 
decrease when grows.  

 

 
Figure 1 Simulation of Opinion Dynamics for n=100 
agents and for different values of ε . 
 
The origin of the complexity of this model is evidently 
the time-varying nature of the problem, and in particular 
the dependency on the state of the system. Note that, if 
the coefficients of the A(z(k)) matrix are fixed (Groot, 
1974; Leherer, 1975) the problem is significantly 
simplified. In order to better understand the complexity 
of the HK model, let us briefly discuss the difference 
(Gasparri and Oliva, 2012) between this model and the 
consensus model.  
Let us consider a time-varying graph G = V,E(k){ }with 

V = 1,� ,n{ } the set of nodes and 

E(k) = eij (k){ } ∈V ×V the set of links at time k, and let 

us recall that for a discrete-time first order average 
consensus over G(k) the dynamics of an agent i is 
defined as follows:  

 
zi (k+1) = zi (k)+τ γ ij

j∈V
∑ (k) z j (k)− zi (k)⎡⎣ ⎤⎦ (3)

 
where γ ij (k) is the entry of the time varying adjacency 
matrix Γ(k)of the graph G(k) and γ ij (k)=1 if 

eij (k)∈ E(k)and zero otherwise. The parameter  

τ ∈ [0,1/ dmax(k)] wheredmax (k)is the maximum degree 
of the graph at time k and is given by: 
 

dmax (k) =maxi{ γ i j (k)}
j=1

n

∑ (4)  

  
The dynamics of the overall system is:  

 

z(k+1)= [I −τL]z(k) (5)                                   

Where L(K) is the Laplacian matrix of the graph G(k) 
encoding the network topology at time , whose elements 

lij{ }are equal to the degree di(k) of node i if i=j and is 

equal to −γ ij (k)  else. 
The following lemma (Gasparri and Oliva, 2012) points 
out a parallelism between the two problem 
formulations.  
 
Lemma 1 Let us consider the HK model given in eq. 
(2). Then, the dynamical matrix can be restated as  
A(k) = I −D(k)L(k)  where L(k) is a time-varying 
laplacian matrix and D(k) is a diagonal matrix whose 
elements aredii (k)=1/ |Ni (k) | .  
The above result emphasizes an interesting difference 
between consensus and opinion dynamics. For the 
consensus problem, the parameter τ is defined with 
respect to the maximum out-degree dmax(k) of the 
network (over all the steps). Therefore, τ  represents a 
global parameter common to all agents. Differently, for 
the HK opinion dynamics problem, there is a diagonal 
D(k) matrix of parameters where each entry dii(k) is a 
local parameter inversely proportional to the 
neighborhood Ni(k) of the i-th agent at time k. Finally, 
let us point out that for the (time-varying) consensus 
over a graph the convergence is related to the fact that 
the graph is jointly connected (Moshtagh and Jadbabaie, 
2007) (i.e., the union of the graphs over a given time 
interval contains a directed spanning tree). 
Unfortunately, this assumption is not generally verified 
by the HK model due to the particular choice of the 
interaction policy which can lead to the isolation of 
some nodes, and thus to a Laplacian matrix with rows 
of zeros.  
 
3. DISTRIBUTED OPINION DYNAMICS WITH 
HETEROGENEOUS RELIABILITY 
In order to adopt the HK model as a framework for the 
composition and the filtering of several clashing 
opinions, an essential step is to modify the model in 
order to take into account for the reputation of each 
sensor. Specifically, let a reputation value εi ∈ [0,1] be 
defined for each agent i, where εi =1means completely 

trustworthy information and εi =1, means completely 
unreliable or fake information. Based on such reputation 
values, let us define the neighborhood of an agent for 
each time step k as follows:  

 
Ni (k) = { j ∈1,� ,n : | zj − zi |≤ε j } (6)

 
in this way each agent i, for each time step, is 
influenced by the opinion of an agent j provided that the 
(absolute value of the) difference in their opinions is 
less than the reputation value of agent j, hence each 
agent I evaluates the reliability of the other agents. 
Figure 2 shows an example of application for N=100 
agents with equispaced initial opinion profile, each with 
a random reputation between 1/40 and 1/9. Note that in 
this case the cluster with greater cardinality (42 agents) 
has an opinion (0.257) that is very distant from the 
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theoretical average (0.5) and from the weighted average 
considering the reliability values as weights (0.479), 
thus modeling a complex decision process where the 
reliability of the information provided by each agent is 
considered.  
 

 
Figure 2: Simulation for n=100 agents with equispaced 
initial opinion profile, each with a random reputation 
between 1/40 and 1/9.  
 
3.1. Distributed estimation via H-K model 
The above framework is indeed a centralized 
framework, where the agents communicate with 
opinion-dependent neighborhoods, although 
theoretically the agents are free to communicate with 
each other. In order to provide a distributed framework, 
there is the need to endow the agents with a network 
topology, thus constraining the communications for an 
agent to the set of agents that are its neighbors 
according to both the network topology and the opinion 
differences. Let Γ = {γ ij} be the adjacency matrix that 
represents the topology of the network, and specifically 
a matrix whose coefficients γ ij =1if there is a link 
between agent i and agent j (we assume each γ ii =1). 
Let us define the neighborhood for this case as 
:  

Ni (k) = { j ∈1,� ,n : | zj − zi |≤ε j γ ij > 0 }  (7) 

The following figures show some simulations for n=100 
agents with equispaced initial opinion profile, each with 
random εi ∈ [ 1 /100, 1 /10 ], over different complex 

network topologies (considering the same reliabilities 
along the different simulations).  
Figure 3 shows a simulation over an Erdos-Renyi 
random network with a maximum of m=10 link per 
node; in this case the agents tend to spread in several 
opinions and the cluster with higher cardinality has 9 
agents and has a value of 0.27.  

Figures 4 and 5 show a simulation over a Scale-free 
network with a maximum of m=5 and m=10 links per 
node, respectively; in this case it is possible to notice 
few clusters of high cardinality and several clusters with 
small cardinality (indeed Scale-free networks have few 
highly connected hubs and many nodes with few links). 
In the first case (e.g., m=5, see Figure 4) the cluster 
with higher cardinality (31 agents) has a value of 0.14, 
while in the second case (e.g., m=10, see Figure 5) the 
value is 0.15 and the cardinality is 29.  

 
Figure 3 Simulation for n=100 agents with equispaced 
initial opinion profile, each with a random reputation 
between 1/00 and 1/10, over a random topology where a 
maximum of m=10 links were allowed. 
  

 
Figure 4: Simulation for n=100 agents with equispaced 
initial opinion profile, each with a random reputation 
between 1/100 and 1/10, over a Scale-free topology 
where a maximum of m=5 links were allowed.  
 

 
Figure 5: Simulation for n=100 agents with equispaced 
initial opinion profile, each with a random reputation 
between 1/100 and 1/10, over a Scale-free topology 
where a maximum of m=10 links were allowed.  
 
As shown in Figure 6 and 7, the situation is different 
when a Small-world network is adopted (e.g., a lattice 
with rewiring probability p=0.3). Specifically Figure 6 
depicts a scenario where a maximum of m=5 links is 
allowed for each agent, while in Figure 7 m=10 links 
are allowed. In this case few clusters are obtained, and 
the time required for obtaining a steady state is 
inversely dependent on the number m of maximum 
links per node. Notice that in this case the largest cluster 
coincides (the value obtained is 0.18 and the cardinality 
is 35 for both Figure 6 and 7).  
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Figure 6: Simulation for n=100 agents with equispaced 
initial opinion profile, each with a random reputation 
between 1/100 and 1/10, over a Small-world topology 
(a lattice with rewiring probability p=0.3) where a 
maximum of m=5 links was allowed. 
 

 
Figure 7: Simulation for n=100 agents with equispaced 
initial opinion profile, each with a random reputation 
between 1/100 and 1/10, over a Small-world topology 
(a lattice with rewiring probability p=0.3) where a 
maximum of m=10 links was allowed.  
 
4. CONCLUSIONS 
In this paper a framework for the composition of pieces 
of information with heterogeneous reliability that 
mimics the human decision-making process has been 
provided extending the Hegelsmann-Krause opinion 
dynamics model. The framework has been also 
extended in order to consider network topologies and 
therefore a distributed process. Future work will be 
devoted to compare such model with other approaches 
for sensor fusion and information merging existing in 
the literature. In particular, since each agent has a single 
initial opinion, the method is expected to be less 
descriptive than Dempster-Shafer Evidence Theory 
framework (Dempster, 1967), where each agent 
provides a belief in the power set of the possible 
hypotheses. To solve this issue future work will 
investigate the extension of the framework to interval 
opinions and to fuzzy opinions, adopting the framework 
in (Gasparri and Oliva, 2012; Oliva et. al., 2012; Oliva, 
2012). Another issue yet to be solved is how to adopt 
such system in a distributed way and specifically how to 
select the cluster with higher cardinality in a distributed 
way, since each node would assume a final opinion 
without knowing the opinions of the other clusters. As a 
matter of fact, the network of distributed agents split 
into several clusters of opinions: however, being the 
agents interconnected by means of a network topology a 
max-consensus may be setup in order to spread the 
value of the cluster with greater cardinality. 
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