
DISTRIBUTED SIMULATION SCIENCE 
 
 

Margaret L. Loper 
Georgia Tech Research Institute 
margaret.loper@gtri.gatech.edu 

 
 
 
 
ABSTRACT 
Computing technology has advanced dramatically over 
the last twenty years, enabling new applications for 
networked simulation.  Along with these applications 
are architectures and standards that support the 
interoperability of heterogeneous simulations.  This 
paper begins by looking at the historical roots of 
distributed simulation, from an architecture and policy 
perspective.  The paper then examines distributed 
simulation as a technology, which is based on the 
science of distributed systems.  The paper identifies two 
key characteristics of distributed systems and then 
describes the modern distributed simulation 
architectures based on these characteristics. 
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1. INTRODUCTION 
Early computer simulations were limited from several 
perspectives.  Most simulators required identical 
computer hardware and software in order to operate and 
create the environment. In this sense they were closed 
systems, and not expandable.  Also computer networks 
were synchronous; the fixed nature of synchronous 
systems using shared memory and time slicing of data 
arrivals made adding simulators to these networks 
impractical.  Technically it was a challenge to separate 
simulator capabilities so that functions could be 
performed autonomously.  

This changed with the evolution of computer 
and communications technologies. The late 1960’s and 
early 1970’s brought the development of several key 
technologies that enabled distributed simulation. The 
UNIX operating system brought the ability to handle 
asynchronous events, such as non-blocking input/output 
and inter-process communication. That was followed by 
expanded computer-to-computer communications with 
the creation of the Advanced Research Projects Agency 
Network (ARPANET). The ARPANET enabled a 
computer to communicate with more than one machine 
by transmitting packets of data (datagrams) on a 
network link.  The invention of Ethernet technology 
enabled the connectivity of a variety of computer 
systems within a local geographical area.  Thus 
simulators no longer needed to be located in the same 
room, but could be distributed.  Then, in 1974, the 
Transmission Control Protocol and the Internet Protocol 
(TCP/IP) emerged as a means to enabled intercomputer 
communications. This development supported 

heterogeneous computer communications, which would 
change simulators from being bounded by their 
computational resources to being bounded by their 
ability to send and receive information. 

The remainder of the paper examines distributed 
simulation as a technology. It begins by looking at the 
historical roots of distributed simulation, from an 
architecture and policy perspective. It then reviews the 
science of distributed systems and identifies two key 
characteristics that apply to distributed simulation.  
Using these characteristics, the paper describes the 
modern distributed simulation architectures in use 
today. 
 
2. DISTRIBUTED SIMULATION BEGINS 
As computing technology advanced, applications for 
networked simulation emerged.  These applications 
included inter-crew training, live tests and training, and 
analysis. For inter-crew training, improving tactical 
proficiency and training large groups was a growing 
need.  In live tests and training, reducing the number of 
events was desired due to safety, environmental and 
cost concerns.  In the discipline of analysis, there was a 
need for individual subsystem evaluation and fine-
tuning of tactics and strategies.  The emerging 
application areas and the advances in computing and 
communication technology led to the first generation of 
distributed simulation architectures.  

Initiated in 1983 by the Defense Advanced 
Research Projects Agency (DARPA), the SIMulator 
NETworking (SIMNET) project was the first attempt to 
exploit the developments in communications 
technology for simulation (Miller and Thorpe 1995). 
SIMNET emphasized tactical team performance in a 
battlefield context, including armor, mechanized 
infantry, helicopters, artillery, communications, and 
logistics.  Combatants could visually see each other 
“out the window” and communicate with each other 
over radio channels. This distributed battlefield was 
based on selective fidelity (only provide features for 
inter-crew skills training), asynchronous message 
passing, commercial computer networks, and replicated 
state information.  SIMNET was based on six design 
principles: 

 
• Object/Event Architecture; the world is 

modeled as a collection of objects which 
interact using events.  
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• Common Environment; the world shares a 
common understanding of terrain and other 
cultural features. 

• Autonomous Simulation Nodes; simulations 
send events to other simulations and receivers 
determine if that information is relevant. 

• Transmission of Ground Truth Information; 
each simulation is responsible for local 
perception and modeling the effects of events 
on its objects.  

• Transmission of State Change Information; 
simulations transmit only changes in the 
behavior of the object(s) they represent. 

• Dead Reckoning Algorithms; simulations 
extrapolate the current position of moving 
objects based on its last reported position. 

 

The first platoon-level system, as shown in 
Figure 1, was installed in April 1986 and over 250 
networked simulators at eleven sites were transitioned 
to the U.S. Army in 1990. Two mobile platoon sets (in 
semi-trailers) were delivered to the Army National 
Guard in 1991. 

 

 
 

Figure 1: SIMNET Simulators at Fort Knox, KY 
 

Among the many contributions of the SIMNET 
program was the invention of semi-automated forces 
(SAF).  The purpose of a SAF simulation was to mimic 
the behavior of different objects on the battlefield, 
whether vehicles or soldiers. Realizing it was 
impractical to have large numbers of operators to 
control both friendly and opposing forces, COL James 
Shiflett created the idea of SAF as a way to put 
opposing forces on the battlefield.  His inspiration for 
SAF was “Night of the Living Dead”, a movie in which 
teenagers are attacked by zombies. COL Shiflett wanted 
a simulation that could produce a large number of 
“dumb” targets (i.e., zombies) to roam the battlefield 
and provide targets for SIMNET operators (Loper 
2008).  Eventually SAF simulations turned into 
something much more intelligent; they could plan 
routes, avoid obstacles, stay in proper formations, and 
detect and engage targets. 

Soon after the SIMNET project, DARPA 
recognized the need to connect aggregate-level combat 
simulations.  The Aggregate Level Simulation Protocol 
(ALSP) extended the benefits of distributed simulation 
to the force-level training community so that different 
aggregate-level simulations could cooperate to provide 
theater-level experiences for battle-staff training. In 
contrast to the SIMNET simulators, these simulations 
were event-stepped and maintaining causality was a 
primary concern. The ALSP program recognized that 
various time management schemes and more complex 
simulated object attribute management requirements 
were needed. The requirements for ALSP were derived 
from the SIMNET philosophy (Weatherly, Seidel, and 
Weissman 1991) and included: 

 
• Simulations need to be able to cooperate over 

a common network to form confederations. 
• Within a confederation, temporal causality 

must be maintained. 
• Simulations should be able to join and exit a 

confederation without major impact on the 
balance of the participating simulations. 

• The system should be network-based with no 
central controllers or arbitrators. 

• Interactions do not require knowledge of 
confederation participants and should support 
an object-oriented view of interactions. 

 
3. LIFE AFTER SIMNET – THE NEED FOR 

STANDARDS 
Several efforts to evaluate simulation technology during 
this timeframe supported and encouraged the need to 
develop and invest in distributed simulation. The 
Defense Science Board (DSB) task force on Computer 
Applications to Training & Wargaming stated 
“Computer-based, simulated scenarios offer the only 
practical and affordable means to improve the training 
of joint operational commanders, their staffs, and the 
commanders and staffs who report to them.” (DSB 
1988)  This was followed by the report on Improving 
Test and Evaluation Effectiveness, which found that 
Modeling & Simulation (M&S) could be an effective 
tool in the acquisition process throughout the systems 
life cycle, especially if employed at the inception of the 
system's existence. (DSB 1989) 

Then in 1991, the potential for distributed 
simulation for the military was realized in an 
operational context. The Battle of 73 Easting was a tank 
battle fought during the Gulf War between the U.S. 
Army and the Iraqi Republican Guard (Krause 1991).  
Despite being alone, outnumbered and out-gunned, the 
2nd Armored Cavalry (ACR) struck a decisive blow 
destroying Iraqi tanks, personnel carriers and wheeled 
vehicles during the battle. The 2nd ACR had trained 
intensely before the battle both in the field and on 
SIMNET.  Immediately, SIMNET’s potential for 
network training was confirmed. 

The following year, the DSB looked at the 
impact of advanced distributed simulation on readiness, 
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training and prototyping (DSB 1993).  They concluded 
that distributed simulation technology could provide the 
means to substantially improve training and readiness; 
create an environment for operational and technical 
innovation for revolutionary improvements; and 
transform the acquisition process.   

Recognizing the importance of the SIMNET 
program and concerned that activity related to 
networked simulation was occurring in isolation, a 
small conference was held in April 1989 called 
"Interactive Networked Simulation for Training". The 
group believed that if there were a means to exchange 
information between companies, distributed simulation 
technology would advance more rapidly. The group also 
believed that technology had stabilized enough to begin 
standardization. The conference soon developed into the 
Distributed Interactive Simulation (DIS) Workshops. 

Through these workshops, networked 
simulation technology and the consensus of the 
community were captured in proceedings and standards. 
The standards initially focused on SIMNET, but quickly 
evolved to include a broader range of technology areas. 
In 1996 the DIS Workshops transformed itself into a 
more functional organization called the Simulation 
Interoperability Standards Organization (SISO). An 
international organization, SISO is dedicated to the 
promotion of M&S interoperability and reuse for the 
benefit of a broad range of M&S communities. 

One of the lasting contributions introduced 
during the time of the DIS Workshops was the 
definition of Live, Virtual, and Constructive (LVC) 
simulations (the term LVC was originally coined by 
GEN Paul Gorman). Live simulation refers to M&S 
involving real people operating real systems (e.g., a 
pilot flying a jet).  A virtual simulation is one that 
involves real people operating simulated systems (e.g., a 
pilot flying a simulated jet).  Constructive simulations 
are those that involve simulated people operating 
simulated systems (e.g., a simulated pilot flying a 
simulated jet).  The LVC taxonomy is a commonly used 
way of classifying models and simulation. 

 
4. DISTRIBUTED SIMULATION SCIENCE 
Distributed simulation technology is based on the 
science of distributed systems. A distributed system is a 
collection of independent computers that appear to the 
users of the system as a single computer (Tanenbaum 
1995).  This definition has two aspects. The first one 
deals with hardware: the machines are autonomous; the 
second deals with software: the users think of the 
system as a single computer.  This characterization 
provides a good foundation for distributed simulation 
technology.  The goal of a distributed simulation is to 
create the illusion in the minds of the users that the 
entire network of simulations is a single system rather 
than a collection of distinct machines.  Therefore, 
understanding how to separate the hardware and 
software design issues is key to developing the 
technology. 

There are numerous challenges associated with 
building software to support distributed simulation.  
These include transparency, openness, scalability, 
performance, fault tolerance and security.  Transparency 
is specifically important as it refers to hiding the 
distribution of components, so the system is perceived 
as “whole” and not a collection of “independent” 
simulations.  Tools are needed to support the 
construction of distributed simulation software, 
specifically protocols that support the patterns of 
communication as well as naming and locating 
simulation processes. 

There are two types of characteristics that 
distinguish the basic patterns of communication in 
distributed simulations: communication mechanisms 
and event synchronization. Communication 
mechanisms refer to the approach for exchanging data 
among two or more simulations.  This includes message 
passing, shared memory, remote procedure call and 
remote method invocation.  With message passing, 
there are several variations of delivery depending on the 
number of receivers.  Data can be sent unicast to 
individual simulations, broadcast to every simulation, or 
multicast to a selected subset of simulations.  
Mechanisms such as publish/subscribe can also be used 
to define subsets of potential receivers.   

Event synchronization refers to the approach 
for synchronizing the sending and receiving of data 
among the participants of a distributed simulation.  
Important properties include time, event ordering and 
time synchronization.  Each simulation in a distributed 
simulation is assumed to maintain an understanding of 
time.  That can include an informal relationship or a 
very strict adherence to a simulation or wall clock. In 
either case, simulations assign a timestamp to each 
message it generates. Event ordering refers to the way 
in which events are delivered to each simulation.  There 
are several choices.  Receive order delivers events 
regardless of the message time stamp and its 
relationship to the global distributed system. Timestamp 
order delivers events in an order directly related to a 
global interpretation of time.  Time synchronization is 
related to both time and event ordering in that it’s 
concerned with the global understanding of time in the 
distributed system.  If global time is needed, there are a 
number of conservative and optimistic synchronization 
algorithms that can be used to achieve this state.   

Communication mechanisms and event 
synchronization can be implemented in one of two 
ways: by individual simulations or by an operating 
system. There are three types of operating system 
commonly used in distributed systems. A network 
operating system is focused on providing local services 
to remote clients, and a distributed operating system 
focuses on providing transparency to users.  
Middleware combines the scalability and openness of a 
network operating system and the transparency and ease 
of use of a distributed operating system to provide 
general-purpose services. There are a number of trade-
offs with the different approaches, including 
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performance, scalability and openness. Modern 
distributed simulation has implemented a range of these 
approaches. 

 
5. LIVE VIRTUAL CONSTRUCTIVE 

SIMULATION ARCHITECTURES 
The most widely used LVC simulation architectures in 
the DoD are Distributed Interactive Simulation (DIS), 
High Level Architecture (HLA) and Test and Training 
Enabling Architecture (TENA). A fourth architecture 
exists but will not be covered in this paper.  The 
Common Training and Instrumentation Architecture 
(CTIA) was developed to link a large number of live 
assets requiring a relatively narrowly bounded set of 
data for purposes of providing After Action Reviews on 
Army training ranges in the support of large-scale 
exercises.  A description of CTIA can be found in 
(Henninger, et al 2008).  

This second generation of distributed simulation 
architectures has evolved over the last 20 years using 
different technologies, standards and funding strategies. 
The following sections give a brief description of the 
architectures, characterizing its approach for 
communication and event synchronization. 

 
5.1. Distributed Interactive Simulation  
“The primary mission of DIS is to define an 
infrastructure for linking simulations of various types at 
multiple locations to create realistic, complex, virtual 
“worlds” for the simulation of highly interactive 
activities.” (DIS 1994)  Distributed Interactive 
Simulatio is based on the fundamental design principles 
of SIMNET.  The goal of DIS is to create a common, 
consistent simulated world where different types of 
simulators can interact.  Central to achieving this goal 
are protocol data units (PDUs); standard messages 
exchanged to convey state about entities and events. 
The PDUs comprise object data related to a common 
function, for example entity state, fire, detonation, and 
emissions were all frequently used PDUs.  The Institute 
of Electrical and Electronics Engineers (IEEE) 
approved the first DIS standard in 1993 with 10 PDUs; 
the most recently published standard has 67 PDUs 
(IEEE 1278.1a 1998).  

From an implementation perspective, 
simulation owners either custom-develop DIS interfaces 
or buy commercial products.  There is also an open-
source initiative, Open-DIS, to provide a full 
implementation of the DIS protocols in C++ and Java 
(McGregor and Brutzman 2008).  The first DIS 
demonstration was held at the 1992 
Interservice/Industry Training, Simulation and 
Education Conference (I/ITSEC) in San Antonio, TX.  
The demo included 20 companies, 25 simulators, and 
one long haul connection.  The network layout for the 
demonstration is shown in Figure 2. A minimal set of 
PDUs (Entity State, Fire and Detonation) were used, 
and the interaction among participants was focused 
mainly on unscripted free-play (Loper, Goldiez, and 
Smith 1993). 

 

 
Figure 2: 1992 I/ITSEC DIS Demo Network 

 
From a distributed system viewpoint, DIS is 

based on the idea that the network and simulators are 
integrated, i.e. there is minimal transparency.  All 
communication about simulation entities and their 
interactions occurs via the PDUs.  Reasonably reliable 
delivery is sufficient; dead reckoning algorithms are 
robust, so 1-2% missing datagram (randomly 
distributed) does not have an adverse impact on 
performance. As a result, most PDUs are sent using the 
best-effort user datagram protocol (UDP).  The network 
is assumed to provide a certain level of assured services 
including, 300 msec end-to-end latency for “loosely 
coupled” interactions and 100 msec total latency for 
“tightly coupled” interactions (IEEE 1278.2 1995). Due 
to the potential for high latency in wide area networks, 
DIS is best for exercises on local area networks. 

Interaction among DIS simulations is peer-to-
peer and occurs using a message-passing paradigm.  
Since PDUs are broadcast to everyone on the network, 
bandwidth and computing resources can be consumed 
processing data that is not relevant to a specific 
simulation.  A study of multicast communications 
occurred in the early 90’s, with the idea of developing a 
new protocol for highly interactive applications. 
Developing a new protocol proved problematic and was 
abandoned. However, progress was made in 
understanding how to create multicast groups.  One of 
the most commonly understood approaches to grouping 
information was called Area of Interest (Macedonia, et 
al 1995).  Multicast was difficult to implement in DIS 
due to the lack of middleware or a distributed operating 
system, which could provide transparency to the 
simulations. 

Time in DIS simulations is managed locally.  
Each simulation advances time at its own pace and 
clocks are managed locally using a local understanding 
of time.  There is no attempt to manage time globally.  
Each PDU has a timestamp assigned by the sending 
simulation and PDUs are delivered to simulations in the 
order received.  Simulations provide ordering locally, 
based on their understanding of time. 
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5.2. High Level Architecture 
The High Level Architecture (HLA) program emerged 
in the mid-90s based on several assumptions.  The first 
premise is no one simulation can solve all the DoD 
functional needs for modeling and simulation.  The 
needs of the users are too diverse. Changing user needs 
define the second premise; it is not possible to 
anticipate how simulations will be used in the future or 
in which combinations.  It is important, therefore, to 
think in terms of multiple simulations that can be reused 
in a variety of ways. This means as simulations are 
developed, they must be constructed so that they can be 
easily brought together with other simulations, to 
support new and different applications.   

These assumptions have affected the HLA design 
in several ways.    Clearly, the architecture itself must 
have modular components with well-defined 
functionality and interfaces.  Further, the HLA 
separated the functionality needed for individual 
simulations (or federates) from the hardware 
infrastructure required to support interoperability.  The 
HLA architecture is defined by three components: 

 
• Rules that simulations must obey to be 

compliant to the standard 
• Object Model Template (OMT) specifies what 

information is communicated between 
simulations and how it is documented  

• Interface Specification document defines a set 
of services that simulators use to communicate 
information  
 
The HLA standards began in 1995 under a 

government standards process managed by the 
Architecture Management Group.  The DoD adopted 
the baseline HLA architecture in 1996 and the standards 
were moved to an open standards process managed by 
SISO (IEEE 1516 2010; IEEE 1516.1 2010; IEEE 
1516.2 2010).   

From a distributed system viewpoint, HLA is 
based on idea of separating the functionality of 
simulations from the infrastructure required for 
communication among simulations.  This separation is 
accomplished by a distributed operating system called 
the Run-Time Infrastructure (RTI).  The RTI provides 
common services to simulation systems and provides 
efficient communications to logical groups of federates.  
Data can be sent using both best effort (UDP) and 
reliable (TCP) internetwork protocols.  An important 
distinction is that the HLA is not the same as the RTI.  
The RTI is an implementation of the HLA Interface 
standard, and thus there can be many different RTIs that 
meets HLA Interface standard.  From an 
implementation perspective, HLA follows a commercial 
business model.  There have been a variety of open-
source initiatives, but none have produced an HLA 
compliant RTI. 

In contrast to the static DIS PDUs, HLA uses 
the concept of OMTs to specify the information 
communicated between simulations.  This enables 

simulation users to customize the types of information 
communicated among simulations based on the needs of 
the federation (what DIS called an exercise).  When the 
OMT is used to define the data for a federation, the 
Federation Object Model (FOM) describes shared 
information (e.g., objects, interactions) and inter-
federate issues (e.g., data encoding schemes).  It didn’t 
take long, however, for the community to understand 
the difficulty in developing FOMs. This led to the 
emergence of reference FOMs (SISO 2001), a 
mechanism for representing commonly used 
information, and Base Object Models (BOMs), a 
mechanism for representing a single set of object model 
data (SISO 1998). 

From a communications perspective, HLA 
learned that broadcasting information to all simulations 
has serious implications on performance. The HLA 
defined a publication/subscription paradigm, whereby 
producers of information describe data it can produce 
and receivers describe data it is interested in receiving. 
The RTI then matches what is published to what has 
been subscribed.  This approach maximizes network 
performance by allowing individual simulations to filter 
data it wants to receive at many different levels. 

The HLA does include time management services 
to support event ordering.  Both time stamp order, 
where messages are delivered to simulations in order of 
time stamp, and receive order, where messages are 
delivered to simulations in order received, are 
supported.  Global time advance and event ordering is 
implemented by means of synchronization algorithms.  
The HLA interface specification supports the two 
commonly defined approaches: conservative and 
optimistic.  While HLA provides global time 
management, use of these services is not required.  
Simulations can chose to advance time at its own pace, 
not synchronized with other simulations.  

 
5.3. Test & Training Enabling Architecture 
The Test and Training Enabling Architecture (TENA) 
emerged in the late 90’s, after the HLA initiative was 
underway.  The purpose of TENA is to provide the 
architecture and the software implementation necessary 
to do three things.  First, TENA enables interoperability 
among Range systems, Facilities, Simulations, and 
C4ISR (Command, Control, Communications, 
Computers, Intelligence, Surveillance and 
Reconnaissance) systems in a quick, cost-efficient 
manner.  It also fosters reuse for Range asset utilization 
and for future developments.  Lastly, TENA provides 
composability to rapidly assemble, initialize, test, and 
execute a system from a pool of reusable, interoperable 
elements.   

The principles of the TENA architecture 
include constrained composition, dynamic run-time 
characterization, subscription service, controlled 
information access, and negotiated quality of service.  
Constrained composition refers to the ability to 
compose the system for specific intended purposes that 
may be either transitory or permanent in nature.  
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Constraints apply to use of assets including physical 
proximity and location, coverage regions, performance 
capabilities, and subsystem compatibility.  Dynamic, 
run-time characterization is focused on responding to 
many allowable compositions and permitting rapid 
reconfigurations.  This is accomplished by establishing 
methods for self-description of data representations 
prior to or concurrent with data transfer or negotiating 
representation issues before operation starts. Similar to 
HLA, the subscription service is an object-based 
approach to data access, which matches producers and 
consumers of information.  Due to the nature of many 
range assets, controlled information access is 
particularly important.  Levels of access allow users to 
limit information access to a desired subset of all users.  
Since some services have significant performance and 
cost implications (e.g., data streams with large capacity 
requirements or strict latency tolerance), users can 
request specialized assets be allocated when needed. 
The negotiated quality of service protocols relies on the 
principal of separation of control information from data. 

The TENA project uses a government 
standards process and is managed by Architecture 
Management Team (AMT).  The AMT controls 
implementation content and Government members of 
the AMT recommend implementation changes.  As 
such, no open standards have been published for TENA, 
however they do follow a formal process for 
standardizing object data. 

From a distributed systems view, TENA 
separates the functionality of range assets from the 
infrastructure required to communicate among assets 
using middleware.   The TENA Middleware is a 
common communication mechanism across all 
applications, providing a single, universal data 
exchange solution.  Data exchanged among range assets 
is defined in object models, which can be sent using 
both best-effort (UDP) and reliable (TCP) internetwork 
protocols. A logical range object model is defined for a 
given execution, and can include both standard (time, 
position, orientation, etc.) and user-defined objects. 

The TENA Middleware combines several 
communication paradigms, including distributed shared 
memory, anonymous publish-subscribe, remote method 
invocations, and native support for data streams (audio, 
video, telemetry, and tactical data links).  Central to 
TENA is the concept of a Stateful Distributed Object 
(SDO) (Noseworthy 2008).  This is a combination of a 
CORBA (Common Object Request Broker 
Architecture) distributed object with data or state.  It is 
disseminated using a publish-subscribe paradigm, and 
subscribers can read the SDO as if it were a local object.  
An SDO may have remotely invocable methods. 

Given the nature of real-time range assets, there is 
no requirement for time management to support event 
ordering.  Messages are delivered to assets in the order 
they are received.  The clock services defined in TENA 
are to manage time issues for the test facility.  This 
includes synchronization and time setting services, as 
well as maintaining a global clock for exercises. 

 
6. SIMULATION INTEROPERABILITY 
Modeling and simulation interoperability is defined as 
“the ability of a model or simulation to provide services 
to and accept services from other models and 
simulations, and to use the services so exchanged to 
enable them to operate effectively together”. 
Interoperability exists when different systems exhibit 
the “same” behavior when stimulated by a set of 
standard procedures. (DoD 2010).  One commonly 
accepted approach for describing interoperability is the 
Levels of Conceptual Interoperability Model (LCIM).  
As shown in Figure 3, the LCIM identifies seven levels 
of interoperability among participating systems and the 
complexity of interoperations (Tolk 2003).  The LCIM 
associates the lower layers with the problems of 
simulation interoperation while the upper layers relate 
to the problems of reuse and composition of models.  

 
Figure 3: Levels of Conceptual Interoperability Model 

 
DIS, HLA, and TENA are solutions focused on 

the lower-layers of the LCIM. Since DIS, HLA, and 
TENA-based federations are not inherently 
interoperable with each other, additional steps are 
needed to enable effective communication among those 
simulations. These steps typically involve using 
gateways or bridges between the various architectures.  
While effective, these approaches can introduce 
increased risk, complexity, cost, level of effort, and 
preparation time into the simulation event.  

Gateways and bridges, however, do not 
address the issues of reuse and composition associated 
with the upper layers of the LCIM. As stated in (Tolk 
2003), “simulation systems are based on models and 
their assumptions and constraints. If two simulation 
systems are combined, these assumptions and 
constraints must be aligned accordingly to ensure 
meaningful results”. Thus ability to reuse supporting 
models, personnel (expertise), and applications across 
the different architectures is limited. 

The lack of interoperability between the 
different architectures introduces a significant and 
largely unnecessary barrier to the integration of live, 
virtual, and constructive simulations. This barrier needs 
to be greatly reduced or eliminated. 
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7. CONCLUSIONS 
Distributed simulation architectures in use within the 
DoD today have all been designed to meet the needs of 
one or more user communities. These architectures 
continue to evolve and mature based on changing 
requirements.  The existence of multiple architectures 
allows users to select the methodology that best meets 
their individual needs.  It also provides an incentive for 
architecture developers and maintainers to 
competitively keep pace with technology and stay 
closely engaged with emerging user requirements 
(Henninger, et al 2008).  

One of the challenges in achieving the 
transparency desired in distributed simulation however 
is that multiple architectures exist. Incompatibilities 
between DIS, HLA and TENA require the development 
of point solutions to effectively integrate the various 
architectures into a single, unified set of simulation 
services. Integration is typically achieved through 
gateway solutions, which can often restrict users to a 
limited set of capabilities that are common across the 
architectures.  The successful integration of distributed 
simulations will continue to rely upon the development 
of simulation standards. 

Despite the advances in distributed simulation 
technology and standards, challenges remain.  In a 2008 
survey on future trends in distributed simulation, the 
most promising areas of research for the simulation 
community were identified as distributed simulation 
middleware, human-computer-interfaces, and the 
semantic web/interoperability (Strassburger, Schulze, 
and Fujimoto 2008).  Within simulation middleware, 
the greatest needs identified were plug-and-play 
capability, standardization and interoperability between 
different standards, semantic connectivity and ubiquity 
(accessible anywhere with any device).   

The results of this survey combined with the 
findings of the Live Virtual Constructive Architecture 
Roadmap panel (Henninger, et al 2008) define the needs 
for the next generation of distributed simulation. The 
DoD has been a driving force in shaping the technology 
and standards for nearly 30 years, and they will 
continue to have a major role defining the way forward. 
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