
DISTRIBUTED SIMULATION SCIENCE

Margaret L. Loper
Georgia Tech Research Institute
margaret.loper@gtri.gatech.edu

ABSTRACT
Computing technology has advanced dramatically over
the last twenty years, enabling new applications for
networked simulation. Along with these applications
are architectures and standards that support the
interoperability of heterogeneous simulations. This
paper begins by looking at the historical roots of
distributed simulation, from an architecture and policy
perspective. The paper then examines distributed
simulation as a technology, which is based on the
science of distributed systems. The paper identifies two
key characteristics of distributed systems and then
describes the modern distributed simulation
architectures based on these characteristics.

Keywords: distributed simulation, interoperability
standards, distributed systems

1. INTRODUCTION
Early computer simulations were limited from several
perspectives. Most simulators required identical
computer hardware and software in order to operate and
create the environment. In this sense they were closed
systems, and not expandable. Also computer networks
were synchronous; the fixed nature of synchronous
systems using shared memory and time slicing of data
arrivals made adding simulators to these networks
impractical. Technically it was a challenge to separate
simulator capabilities so that functions could be
performed autonomously.

This changed with the evolution of computer
and communications technologies. The late 1960’s and
early 1970’s brought the development of several key
technologies that enabled distributed simulation. The
UNIX operating system brought the ability to handle
asynchronous events, such as non-blocking input/output
and inter-process communication. That was followed by
expanded computer-to-computer communications with
the creation of the Advanced Research Projects Agency
Network (ARPANET). The ARPANET enabled a
computer to communicate with more than one machine
by transmitting packets of data (datagrams) on a
network link. The invention of Ethernet technology
enabled the connectivity of a variety of computer
systems within a local geographical area. Thus
simulators no longer needed to be located in the same
room, but could be distributed. Then, in 1974, the
Transmission Control Protocol and the Internet Protocol
(TCP/IP) emerged as a means to enabled intercomputer
communications. This development supported

heterogeneous computer communications, which would
change simulators from being bounded by their
computational resources to being bounded by their
ability to send and receive information.

The remainder of the paper examines distributed
simulation as a technology. It begins by looking at the
historical roots of distributed simulation, from an
architecture and policy perspective. It then reviews the
science of distributed systems and identifies two key
characteristics that apply to distributed simulation.
Using these characteristics, the paper describes the
modern distributed simulation architectures in use
today.

2. DISTRIBUTED SIMULATION BEGINS
As computing technology advanced, applications for
networked simulation emerged. These applications
included inter-crew training, live tests and training, and
analysis. For inter-crew training, improving tactical
proficiency and training large groups was a growing
need. In live tests and training, reducing the number of
events was desired due to safety, environmental and
cost concerns. In the discipline of analysis, there was a
need for individual subsystem evaluation and fine-
tuning of tactics and strategies. The emerging
application areas and the advances in computing and
communication technology led to the first generation of
distributed simulation architectures.

Initiated in 1983 by the Defense Advanced
Research Projects Agency (DARPA), the SIMulator
NETworking (SIMNET) project was the first attempt to
exploit the developments in communications
technology for simulation (Miller and Thorpe 1995).
SIMNET emphasized tactical team performance in a
battlefield context, including armor, mechanized
infantry, helicopters, artillery, communications, and
logistics. Combatants could visually see each other
“out the window” and communicate with each other
over radio channels. This distributed battlefield was
based on selective fidelity (only provide features for
inter-crew skills training), asynchronous message
passing, commercial computer networks, and replicated
state information. SIMNET was based on six design
principles:

• Object/Event Architecture; the world is

modeled as a collection of objects which
interact using events.

83
ISBN 978-88-903724-3-8

• Common Environment; the world shares a
common understanding of terrain and other
cultural features.

• Autonomous Simulation Nodes; simulations
send events to other simulations and receivers
determine if that information is relevant.

• Transmission of Ground Truth Information;
each simulation is responsible for local
perception and modeling the effects of events
on its objects.

• Transmission of State Change Information;
simulations transmit only changes in the
behavior of the object(s) they represent.

• Dead Reckoning Algorithms; simulations
extrapolate the current position of moving
objects based on its last reported position.

The first platoon-level system, as shown in
Figure 1, was installed in April 1986 and over 250
networked simulators at eleven sites were transitioned
to the U.S. Army in 1990. Two mobile platoon sets (in
semi-trailers) were delivered to the Army National
Guard in 1991.

Figure 1: SIMNET Simulators at Fort Knox, KY

Among the many contributions of the SIMNET
program was the invention of semi-automated forces
(SAF). The purpose of a SAF simulation was to mimic
the behavior of different objects on the battlefield,
whether vehicles or soldiers. Realizing it was
impractical to have large numbers of operators to
control both friendly and opposing forces, COL James
Shiflett created the idea of SAF as a way to put
opposing forces on the battlefield. His inspiration for
SAF was “Night of the Living Dead”, a movie in which
teenagers are attacked by zombies. COL Shiflett wanted
a simulation that could produce a large number of
“dumb” targets (i.e., zombies) to roam the battlefield
and provide targets for SIMNET operators (Loper
2008). Eventually SAF simulations turned into
something much more intelligent; they could plan
routes, avoid obstacles, stay in proper formations, and
detect and engage targets.

Soon after the SIMNET project, DARPA
recognized the need to connect aggregate-level combat
simulations. The Aggregate Level Simulation Protocol
(ALSP) extended the benefits of distributed simulation
to the force-level training community so that different
aggregate-level simulations could cooperate to provide
theater-level experiences for battle-staff training. In
contrast to the SIMNET simulators, these simulations
were event-stepped and maintaining causality was a
primary concern. The ALSP program recognized that
various time management schemes and more complex
simulated object attribute management requirements
were needed. The requirements for ALSP were derived
from the SIMNET philosophy (Weatherly, Seidel, and
Weissman 1991) and included:

• Simulations need to be able to cooperate over

a common network to form confederations.
• Within a confederation, temporal causality

must be maintained.
• Simulations should be able to join and exit a

confederation without major impact on the
balance of the participating simulations.

• The system should be network-based with no
central controllers or arbitrators.

• Interactions do not require knowledge of
confederation participants and should support
an object-oriented view of interactions.

3. LIFE AFTER SIMNET – THE NEED FOR

STANDARDS
Several efforts to evaluate simulation technology during
this timeframe supported and encouraged the need to
develop and invest in distributed simulation. The
Defense Science Board (DSB) task force on Computer
Applications to Training & Wargaming stated
“Computer-based, simulated scenarios offer the only
practical and affordable means to improve the training
of joint operational commanders, their staffs, and the
commanders and staffs who report to them.” (DSB
1988) This was followed by the report on Improving
Test and Evaluation Effectiveness, which found that
Modeling & Simulation (M&S) could be an effective
tool in the acquisition process throughout the systems
life cycle, especially if employed at the inception of the
system's existence. (DSB 1989)

Then in 1991, the potential for distributed
simulation for the military was realized in an
operational context. The Battle of 73 Easting was a tank
battle fought during the Gulf War between the U.S.
Army and the Iraqi Republican Guard (Krause 1991).
Despite being alone, outnumbered and out-gunned, the
2nd Armored Cavalry (ACR) struck a decisive blow
destroying Iraqi tanks, personnel carriers and wheeled
vehicles during the battle. The 2nd ACR had trained
intensely before the battle both in the field and on
SIMNET. Immediately, SIMNET’s potential for
network training was confirmed.

The following year, the DSB looked at the
impact of advanced distributed simulation on readiness,

84
ISBN 978-88-903724-3-8

training and prototyping (DSB 1993). They concluded
that distributed simulation technology could provide the
means to substantially improve training and readiness;
create an environment for operational and technical
innovation for revolutionary improvements; and
transform the acquisition process.

Recognizing the importance of the SIMNET
program and concerned that activity related to
networked simulation was occurring in isolation, a
small conference was held in April 1989 called
"Interactive Networked Simulation for Training". The
group believed that if there were a means to exchange
information between companies, distributed simulation
technology would advance more rapidly. The group also
believed that technology had stabilized enough to begin
standardization. The conference soon developed into the
Distributed Interactive Simulation (DIS) Workshops.

Through these workshops, networked
simulation technology and the consensus of the
community were captured in proceedings and standards.
The standards initially focused on SIMNET, but quickly
evolved to include a broader range of technology areas.
In 1996 the DIS Workshops transformed itself into a
more functional organization called the Simulation
Interoperability Standards Organization (SISO). An
international organization, SISO is dedicated to the
promotion of M&S interoperability and reuse for the
benefit of a broad range of M&S communities.

One of the lasting contributions introduced
during the time of the DIS Workshops was the
definition of Live, Virtual, and Constructive (LVC)
simulations (the term LVC was originally coined by
GEN Paul Gorman). Live simulation refers to M&S
involving real people operating real systems (e.g., a
pilot flying a jet). A virtual simulation is one that
involves real people operating simulated systems (e.g., a
pilot flying a simulated jet). Constructive simulations
are those that involve simulated people operating
simulated systems (e.g., a simulated pilot flying a
simulated jet). The LVC taxonomy is a commonly used
way of classifying models and simulation.

4. DISTRIBUTED SIMULATION SCIENCE
Distributed simulation technology is based on the
science of distributed systems. A distributed system is a
collection of independent computers that appear to the
users of the system as a single computer (Tanenbaum
1995). This definition has two aspects. The first one
deals with hardware: the machines are autonomous; the
second deals with software: the users think of the
system as a single computer. This characterization
provides a good foundation for distributed simulation
technology. The goal of a distributed simulation is to
create the illusion in the minds of the users that the
entire network of simulations is a single system rather
than a collection of distinct machines. Therefore,
understanding how to separate the hardware and
software design issues is key to developing the
technology.

There are numerous challenges associated with
building software to support distributed simulation.
These include transparency, openness, scalability,
performance, fault tolerance and security. Transparency
is specifically important as it refers to hiding the
distribution of components, so the system is perceived
as “whole” and not a collection of “independent”
simulations. Tools are needed to support the
construction of distributed simulation software,
specifically protocols that support the patterns of
communication as well as naming and locating
simulation processes.

There are two types of characteristics that
distinguish the basic patterns of communication in
distributed simulations: communication mechanisms
and event synchronization. Communication
mechanisms refer to the approach for exchanging data
among two or more simulations. This includes message
passing, shared memory, remote procedure call and
remote method invocation. With message passing,
there are several variations of delivery depending on the
number of receivers. Data can be sent unicast to
individual simulations, broadcast to every simulation, or
multicast to a selected subset of simulations.
Mechanisms such as publish/subscribe can also be used
to define subsets of potential receivers.

Event synchronization refers to the approach
for synchronizing the sending and receiving of data
among the participants of a distributed simulation.
Important properties include time, event ordering and
time synchronization. Each simulation in a distributed
simulation is assumed to maintain an understanding of
time. That can include an informal relationship or a
very strict adherence to a simulation or wall clock. In
either case, simulations assign a timestamp to each
message it generates. Event ordering refers to the way
in which events are delivered to each simulation. There
are several choices. Receive order delivers events
regardless of the message time stamp and its
relationship to the global distributed system. Timestamp
order delivers events in an order directly related to a
global interpretation of time. Time synchronization is
related to both time and event ordering in that it’s
concerned with the global understanding of time in the
distributed system. If global time is needed, there are a
number of conservative and optimistic synchronization
algorithms that can be used to achieve this state.

Communication mechanisms and event
synchronization can be implemented in one of two
ways: by individual simulations or by an operating
system. There are three types of operating system
commonly used in distributed systems. A network
operating system is focused on providing local services
to remote clients, and a distributed operating system
focuses on providing transparency to users.
Middleware combines the scalability and openness of a
network operating system and the transparency and ease
of use of a distributed operating system to provide
general-purpose services. There are a number of trade-
offs with the different approaches, including

85
ISBN 978-88-903724-3-8

performance, scalability and openness. Modern
distributed simulation has implemented a range of these
approaches.

5. LIVE VIRTUAL CONSTRUCTIVE

SIMULATION ARCHITECTURES
The most widely used LVC simulation architectures in
the DoD are Distributed Interactive Simulation (DIS),
High Level Architecture (HLA) and Test and Training
Enabling Architecture (TENA). A fourth architecture
exists but will not be covered in this paper. The
Common Training and Instrumentation Architecture
(CTIA) was developed to link a large number of live
assets requiring a relatively narrowly bounded set of
data for purposes of providing After Action Reviews on
Army training ranges in the support of large-scale
exercises. A description of CTIA can be found in
(Henninger, et al 2008).

This second generation of distributed simulation
architectures has evolved over the last 20 years using
different technologies, standards and funding strategies.
The following sections give a brief description of the
architectures, characterizing its approach for
communication and event synchronization.

5.1. Distributed Interactive Simulation
“The primary mission of DIS is to define an
infrastructure for linking simulations of various types at
multiple locations to create realistic, complex, virtual
“worlds” for the simulation of highly interactive
activities.” (DIS 1994) Distributed Interactive
Simulatio is based on the fundamental design principles
of SIMNET. The goal of DIS is to create a common,
consistent simulated world where different types of
simulators can interact. Central to achieving this goal
are protocol data units (PDUs); standard messages
exchanged to convey state about entities and events.
The PDUs comprise object data related to a common
function, for example entity state, fire, detonation, and
emissions were all frequently used PDUs. The Institute
of Electrical and Electronics Engineers (IEEE)
approved the first DIS standard in 1993 with 10 PDUs;
the most recently published standard has 67 PDUs
(IEEE 1278.1a 1998).

From an implementation perspective,
simulation owners either custom-develop DIS interfaces
or buy commercial products. There is also an open-
source initiative, Open-DIS, to provide a full
implementation of the DIS protocols in C++ and Java
(McGregor and Brutzman 2008). The first DIS
demonstration was held at the 1992
Interservice/Industry Training, Simulation and
Education Conference (I/ITSEC) in San Antonio, TX.
The demo included 20 companies, 25 simulators, and
one long haul connection. The network layout for the
demonstration is shown in Figure 2. A minimal set of
PDUs (Entity State, Fire and Detonation) were used,
and the interaction among participants was focused
mainly on unscripted free-play (Loper, Goldiez, and
Smith 1993).

Figure 2: 1992 I/ITSEC DIS Demo Network

From a distributed system viewpoint, DIS is

based on the idea that the network and simulators are
integrated, i.e. there is minimal transparency. All
communication about simulation entities and their
interactions occurs via the PDUs. Reasonably reliable
delivery is sufficient; dead reckoning algorithms are
robust, so 1-2% missing datagram (randomly
distributed) does not have an adverse impact on
performance. As a result, most PDUs are sent using the
best-effort user datagram protocol (UDP). The network
is assumed to provide a certain level of assured services
including, 300 msec end-to-end latency for “loosely
coupled” interactions and 100 msec total latency for
“tightly coupled” interactions (IEEE 1278.2 1995). Due
to the potential for high latency in wide area networks,
DIS is best for exercises on local area networks.

Interaction among DIS simulations is peer-to-
peer and occurs using a message-passing paradigm.
Since PDUs are broadcast to everyone on the network,
bandwidth and computing resources can be consumed
processing data that is not relevant to a specific
simulation. A study of multicast communications
occurred in the early 90’s, with the idea of developing a
new protocol for highly interactive applications.
Developing a new protocol proved problematic and was
abandoned. However, progress was made in
understanding how to create multicast groups. One of
the most commonly understood approaches to grouping
information was called Area of Interest (Macedonia, et
al 1995). Multicast was difficult to implement in DIS
due to the lack of middleware or a distributed operating
system, which could provide transparency to the
simulations.

Time in DIS simulations is managed locally.
Each simulation advances time at its own pace and
clocks are managed locally using a local understanding
of time. There is no attempt to manage time globally.
Each PDU has a timestamp assigned by the sending
simulation and PDUs are delivered to simulations in the
order received. Simulations provide ordering locally,
based on their understanding of time.

86
ISBN 978-88-903724-3-8

5.2. High Level Architecture
The High Level Architecture (HLA) program emerged
in the mid-90s based on several assumptions. The first
premise is no one simulation can solve all the DoD
functional needs for modeling and simulation. The
needs of the users are too diverse. Changing user needs
define the second premise; it is not possible to
anticipate how simulations will be used in the future or
in which combinations. It is important, therefore, to
think in terms of multiple simulations that can be reused
in a variety of ways. This means as simulations are
developed, they must be constructed so that they can be
easily brought together with other simulations, to
support new and different applications.

These assumptions have affected the HLA design
in several ways. Clearly, the architecture itself must
have modular components with well-defined
functionality and interfaces. Further, the HLA
separated the functionality needed for individual
simulations (or federates) from the hardware
infrastructure required to support interoperability. The
HLA architecture is defined by three components:

• Rules that simulations must obey to be

compliant to the standard
• Object Model Template (OMT) specifies what

information is communicated between
simulations and how it is documented

• Interface Specification document defines a set
of services that simulators use to communicate
information

The HLA standards began in 1995 under a

government standards process managed by the
Architecture Management Group. The DoD adopted
the baseline HLA architecture in 1996 and the standards
were moved to an open standards process managed by
SISO (IEEE 1516 2010; IEEE 1516.1 2010; IEEE
1516.2 2010).

From a distributed system viewpoint, HLA is
based on idea of separating the functionality of
simulations from the infrastructure required for
communication among simulations. This separation is
accomplished by a distributed operating system called
the Run-Time Infrastructure (RTI). The RTI provides
common services to simulation systems and provides
efficient communications to logical groups of federates.
Data can be sent using both best effort (UDP) and
reliable (TCP) internetwork protocols. An important
distinction is that the HLA is not the same as the RTI.
The RTI is an implementation of the HLA Interface
standard, and thus there can be many different RTIs that
meets HLA Interface standard. From an
implementation perspective, HLA follows a commercial
business model. There have been a variety of open-
source initiatives, but none have produced an HLA
compliant RTI.

In contrast to the static DIS PDUs, HLA uses
the concept of OMTs to specify the information
communicated between simulations. This enables

simulation users to customize the types of information
communicated among simulations based on the needs of
the federation (what DIS called an exercise). When the
OMT is used to define the data for a federation, the
Federation Object Model (FOM) describes shared
information (e.g., objects, interactions) and inter-
federate issues (e.g., data encoding schemes). It didn’t
take long, however, for the community to understand
the difficulty in developing FOMs. This led to the
emergence of reference FOMs (SISO 2001), a
mechanism for representing commonly used
information, and Base Object Models (BOMs), a
mechanism for representing a single set of object model
data (SISO 1998).

From a communications perspective, HLA
learned that broadcasting information to all simulations
has serious implications on performance. The HLA
defined a publication/subscription paradigm, whereby
producers of information describe data it can produce
and receivers describe data it is interested in receiving.
The RTI then matches what is published to what has
been subscribed. This approach maximizes network
performance by allowing individual simulations to filter
data it wants to receive at many different levels.

The HLA does include time management services
to support event ordering. Both time stamp order,
where messages are delivered to simulations in order of
time stamp, and receive order, where messages are
delivered to simulations in order received, are
supported. Global time advance and event ordering is
implemented by means of synchronization algorithms.
The HLA interface specification supports the two
commonly defined approaches: conservative and
optimistic. While HLA provides global time
management, use of these services is not required.
Simulations can chose to advance time at its own pace,
not synchronized with other simulations.

5.3. Test & Training Enabling Architecture
The Test and Training Enabling Architecture (TENA)
emerged in the late 90’s, after the HLA initiative was
underway. The purpose of TENA is to provide the
architecture and the software implementation necessary
to do three things. First, TENA enables interoperability
among Range systems, Facilities, Simulations, and
C4ISR (Command, Control, Communications,
Computers, Intelligence, Surveillance and
Reconnaissance) systems in a quick, cost-efficient
manner. It also fosters reuse for Range asset utilization
and for future developments. Lastly, TENA provides
composability to rapidly assemble, initialize, test, and
execute a system from a pool of reusable, interoperable
elements.

The principles of the TENA architecture
include constrained composition, dynamic run-time
characterization, subscription service, controlled
information access, and negotiated quality of service.
Constrained composition refers to the ability to
compose the system for specific intended purposes that
may be either transitory or permanent in nature.

87
ISBN 978-88-903724-3-8

Constraints apply to use of assets including physical
proximity and location, coverage regions, performance
capabilities, and subsystem compatibility. Dynamic,
run-time characterization is focused on responding to
many allowable compositions and permitting rapid
reconfigurations. This is accomplished by establishing
methods for self-description of data representations
prior to or concurrent with data transfer or negotiating
representation issues before operation starts. Similar to
HLA, the subscription service is an object-based
approach to data access, which matches producers and
consumers of information. Due to the nature of many
range assets, controlled information access is
particularly important. Levels of access allow users to
limit information access to a desired subset of all users.
Since some services have significant performance and
cost implications (e.g., data streams with large capacity
requirements or strict latency tolerance), users can
request specialized assets be allocated when needed.
The negotiated quality of service protocols relies on the
principal of separation of control information from data.

The TENA project uses a government
standards process and is managed by Architecture
Management Team (AMT). The AMT controls
implementation content and Government members of
the AMT recommend implementation changes. As
such, no open standards have been published for TENA,
however they do follow a formal process for
standardizing object data.

From a distributed systems view, TENA
separates the functionality of range assets from the
infrastructure required to communicate among assets
using middleware. The TENA Middleware is a
common communication mechanism across all
applications, providing a single, universal data
exchange solution. Data exchanged among range assets
is defined in object models, which can be sent using
both best-effort (UDP) and reliable (TCP) internetwork
protocols. A logical range object model is defined for a
given execution, and can include both standard (time,
position, orientation, etc.) and user-defined objects.

The TENA Middleware combines several
communication paradigms, including distributed shared
memory, anonymous publish-subscribe, remote method
invocations, and native support for data streams (audio,
video, telemetry, and tactical data links). Central to
TENA is the concept of a Stateful Distributed Object
(SDO) (Noseworthy 2008). This is a combination of a
CORBA (Common Object Request Broker
Architecture) distributed object with data or state. It is
disseminated using a publish-subscribe paradigm, and
subscribers can read the SDO as if it were a local object.
An SDO may have remotely invocable methods.

Given the nature of real-time range assets, there is
no requirement for time management to support event
ordering. Messages are delivered to assets in the order
they are received. The clock services defined in TENA
are to manage time issues for the test facility. This
includes synchronization and time setting services, as
well as maintaining a global clock for exercises.

6. SIMULATION INTEROPERABILITY
Modeling and simulation interoperability is defined as
“the ability of a model or simulation to provide services
to and accept services from other models and
simulations, and to use the services so exchanged to
enable them to operate effectively together”.
Interoperability exists when different systems exhibit
the “same” behavior when stimulated by a set of
standard procedures. (DoD 2010). One commonly
accepted approach for describing interoperability is the
Levels of Conceptual Interoperability Model (LCIM).
As shown in Figure 3, the LCIM identifies seven levels
of interoperability among participating systems and the
complexity of interoperations (Tolk 2003). The LCIM
associates the lower layers with the problems of
simulation interoperation while the upper layers relate
to the problems of reuse and composition of models.

Figure 3: Levels of Conceptual Interoperability Model

DIS, HLA, and TENA are solutions focused on

the lower-layers of the LCIM. Since DIS, HLA, and
TENA-based federations are not inherently
interoperable with each other, additional steps are
needed to enable effective communication among those
simulations. These steps typically involve using
gateways or bridges between the various architectures.
While effective, these approaches can introduce
increased risk, complexity, cost, level of effort, and
preparation time into the simulation event.

Gateways and bridges, however, do not
address the issues of reuse and composition associated
with the upper layers of the LCIM. As stated in (Tolk
2003), “simulation systems are based on models and
their assumptions and constraints. If two simulation
systems are combined, these assumptions and
constraints must be aligned accordingly to ensure
meaningful results”. Thus ability to reuse supporting
models, personnel (expertise), and applications across
the different architectures is limited.

The lack of interoperability between the
different architectures introduces a significant and
largely unnecessary barrier to the integration of live,
virtual, and constructive simulations. This barrier needs
to be greatly reduced or eliminated.

88
ISBN 978-88-903724-3-8

7. CONCLUSIONS
Distributed simulation architectures in use within the
DoD today have all been designed to meet the needs of
one or more user communities. These architectures
continue to evolve and mature based on changing
requirements. The existence of multiple architectures
allows users to select the methodology that best meets
their individual needs. It also provides an incentive for
architecture developers and maintainers to
competitively keep pace with technology and stay
closely engaged with emerging user requirements
(Henninger, et al 2008).

One of the challenges in achieving the
transparency desired in distributed simulation however
is that multiple architectures exist. Incompatibilities
between DIS, HLA and TENA require the development
of point solutions to effectively integrate the various
architectures into a single, unified set of simulation
services. Integration is typically achieved through
gateway solutions, which can often restrict users to a
limited set of capabilities that are common across the
architectures. The successful integration of distributed
simulations will continue to rely upon the development
of simulation standards.

Despite the advances in distributed simulation
technology and standards, challenges remain. In a 2008
survey on future trends in distributed simulation, the
most promising areas of research for the simulation
community were identified as distributed simulation
middleware, human-computer-interfaces, and the
semantic web/interoperability (Strassburger, Schulze,
and Fujimoto 2008). Within simulation middleware,
the greatest needs identified were plug-and-play
capability, standardization and interoperability between
different standards, semantic connectivity and ubiquity
(accessible anywhere with any device).

The results of this survey combined with the
findings of the Live Virtual Constructive Architecture
Roadmap panel (Henninger, et al 2008) define the needs
for the next generation of distributed simulation. The
DoD has been a driving force in shaping the technology
and standards for nearly 30 years, and they will
continue to have a major role defining the way forward.

REFERENCES
Defense Science Board, 1988. Computer Applications

to Training and Wargaming. Final Report,
ADA199456, May.

Defense Science Board, 1989. Improving Test and
Evaluation Effectiveness. Final Report,
ADA274809, December.

Defense Science Board, 1993. Simulation, Readiness
and Prototyping. Final Report, ADA266125,
January.

DIS Steering Committee, 1994. The DIS Vision: a map
to the vision of distributed simulation. IST
Technical Report, May.

Henninger, A, Cutts, D, Loper, M, Lutz, R, Richbourg,
R, Saunders, R, Swenson, S. Live Virtual
Constructive Architecture Roadmap (LVCAR)
Final Report. M&S CO Project No. 06OC-TR-
001, September 2008.

IEEE 1278.1a – 1998. Standard for Distributed
Interactive Simulation - Application Protocols,
Version 6 (amendment to IEEE 1278.1-1995).

IEEE 1278.2 – 1995. Standard for Distributed
Interactive Simulation - Communication Services
and Profiles.

IEEE 1516 – 2010. Standard for Modeling and
Simulation High Level Architecture - Framework
and Rules.

IEEE 1516.1 – 2010. Standard for Modeling and
Simulation High Level Architecture - Federate
Interface Specification.

IEEE 1516.2 – 2010. Standard for Modeling and
Simulation High Level Architecture - Object
Model Template (OMT) Specification.

Krause, M., 1991. The Battle of 73 Easting, 26
February 1991, a historical introduction to a
simulation. Draft report, US Army Center of
Military History, May 2 May.

Loper, M., 2008. Interview with COL James Shiflett on
History of Distributed Simulation. Live Virtual
Constructive Architecture Roadmap (LVCAR)
project. Report, M&S CO Project No. 06OC-TR-
001, September.

Loper, M., Goldiez, B., and Smith, S., 1993. The 1992
I/ITSEC Distributed Interactive Simulation
Interoperability Demonstration. Proceedings of
the 15th Interservice/Industry Training Systems
and Education Conference. November 29 -
December 2, Orlando (Florida USA).

Macedonia, M, Zyda, M, Pratt, D, Brutzman, D,
Barnham, P., 1995. Exploiting Reality with
Multicast Groups. IEEE Computer Graphics and
Applications, 15 (5), 38-45.

McGregor, D, Brutzman, D., 2008. Open-DIS: An Open
Source Implementation of the DIS Protocol for
C++ and Java. Proceedings of the Fall Simulation
Interoperability Workshop. 15-19 September,
Orlando (Florida USA).

Miller, D. and Thorpe, J., 1995. SIMNET: the advent of
simulator networking. Proceedings of the IEEE,
83 (8), 1114 – 1123.

DoD, 2010. DoD Modeling and Simulation (M&S)
Glossary. Available from: http://www.msco.mil/
[accessed 15 July 2011].

Noseworthy, J. R., 2008. The Test and Training
Enabling Architecture (TENA) Supporting the
Decentralized Development of Distributed

89
ISBN 978-88-903724-3-8

Applications and LVC Simulations. Proceeding
DS-RT '08 Proceedings of the 2008 12th
IEEE/ACM International Symposium on
Distributed Simulation and Real-Time
Applications, pp. 259-268. October 27-29,
Vancouver, (British Columbia, Canada).

Simulation Interoperability Standards Organization,
1998. Reference FOM Final Report. SISO-REF-
001-1998, March 9.

Simulation Interoperability Standards Organization,
2001. BOM Study Group Final Report. SISO-
REF-005-2001, May 15.

Strassburger, S, Schulze, T, Fujimoto, R., 2008. Future
Trends In Distributed Simulation and Distributed
Virtual Environments: Results Of A Peer Study.
Proceedings of the Winter Simulation Conference.
December 7-10, Miami (Florida, USA).

Tanenbaum, AS., 1995. Distributed Operating Systems.
1st Edition New Jersey: Prentice Hall.

AUTHORS BIOGRAPHY
Margaret Loper is the Chief Scientist for the
Information & Communications Laboratory at the
Georgia Tech Research Institute. She holds a Ph.D. in
Computer Science from the Georgia Institute of
Technology, a M.S. in Computer Engineering from the
University of Central Florida, and a B.S. in Electrical
Engineering from Clemson University. Margaret’s
technical focus is parallel and distributed simulation,
and she has published more than 50 papers as book
chapters, journal contributions, or in conference
proceedings. She is a senior member of the IEEE and
ACM, and member of the Society for Modeling and
Simulation. She is a founding member of the
Simulation Interoperability Standards Organization
(SISO) and received service awards for her work with
the Distributed Interactive Simulation (DIS) and High
Level Architecture (HLA) standards and the DIS/SISO
transition. Her research contributions are in the areas of
temporal synchronization, simulation testing, and
simulation communication protocols.

90
ISBN 978-88-903724-3-8

