
DEVS-BASED VALIDATION OF UAV PATH PLANNING IN HOSTILE ENVIRONMENTS

Alejandro Moreno
(a)

, Luís de la Torre
 (a)

, José L. Risco-Martin
(b)

, Eva Besada-Portas
 (b)

 Joaquín Aranda
 (a)

(a)

Dpto. Informática y Automática, Univ. Nacional de Educación a Distancia (Madrid, Spain)
(b)

Dpto. Arquitectura de Computadores y Automática, Univ. Complutense de Madrid (Madrid, Spain)

(a)

amoreno@bec.uned.es, ldltorre@bec.uned.es, jaranda@dia.uned.es
(b)

jlrisco@dacya.ucm.es, evabes@dacya.ucm.es

ABSTRACT

Discrete Event Specification (DEVS) is a sound formal

modeling and simulation framework based on concepts

derived from dynamic systems theory. DEVS provides

a framework for information modeling with several

advantages to analyze and design complex systems:

completeness, verifiability, extensibility, and

maintainability. Unmanned Aerial Vehicles (UAVs) are

aircrafts without onboard pilots that can be controlled

remotely or fly autonomously based on pre-

programmed flight routes. They are used in a wide

variety of fields, both civil and military. This research

work is focused on taking advantage of DEVS

simulation framework to build models that simulate a

complex military problem. The simulator is used to

validate the results of a route planner for multiple

UAVs. The path planner uses several approximations to

compute solutions in affordable time, whereas the

simulator uses accurate models to validate those results.

Keywords: DEVS, UAV, simulation, path planning

1. INTRODUCTION AND RELATED WORK

Unmanned Aerial Vehicles are aircrafts without

onboard pilots that can be controlled remotely or fly

autonomously based on pre-programmed flight routes

(Stevens and Lewis 2004). They are used in a wide

variety of fields, both civil and military, such as

surveillance, reconnaissance, geophysical survey,

environmental and meteorological monitoring, aerial

photography, and search-and-rescue tasks.

 In military missions they work in dangerous

environments, where it is vital to fly along routes which

keep the UAVs away from any type of threat and

prohibited zone. The threats of our problem are ADUs,

which consists on detection radar to discover the UAVs,

a set of tracking radars to follow their trajectories and a

set of missiles to destroy them. The prohibited zones,

also known as Non Flying Zones (NFZs), are certain

regions that the UAVs cannot visit due to mission

restrictions.

 The best routes for the UAVs are those which

minimize the risk of destruction of each UAV and

optimize some planning criteria (such as flying time and

path length) while fulfilling all the physical constraints

of the UAVs and its environment, plus the restrictions

imposed by the selected mission (such as forcing the

UAVs to visit some points of the map).

Therefore, the motivation of this research is to

validate the results of a route planner for multiple

UAVs (Besada-Portas et al. 2011) applying DEVS

formalism. The path planner uses several

approximations to compute solutions in affordable time,

whereas the simulator uses accurate models to validate

those results.

In order to evaluate the quality of the planner

before using it in real missions, we decide to validate

the routes in multiple experiments against a simulator

that contains models for all the elements of the problem.

In this problem, those elements are the lists of way

points (WPs), the UAVs, the radars and the missiles; as

well as the terrain, and the controllers coupled with the

UAVs, this last group responsible for translating the

WPs in maneuverability instructions. The models of the

radars and missiles are non-deterministic, incorporating

stochastic behaviors related with the probability of

detection and destruction of the UAVs. So, two

simulations for the same experiment and optimal

trajectories can return different results.

The simulation symbolizes a scenario where one or

more unmanned aerial vehicles must follow a given

trajectory trying to avoid flying within air defense unit’s

visibility range. The trajectories are calculated prior to

the simulation, each trajectory consists of a sequence of

way points, each way point may also be a getaway.

To properly simulate this set of elements, correct

models have to be used as the basis of the simulation.

Traditional flight simulators, such as Microsoft Flight

Simulator, FlightGear and X-Plane have very accurate

aerodynamics models incorporated in their programs,

but they do not include other elements like Air Defense

Units or UAV’s embedded radars.

In addition, these programs need a lot of memory

and computing time to accurately calculate UAV’s

position and attitude. In this regard, a number of multi-

UAV simulations have already been developed. In

Rasmussen and Chandler (2002), the authors propose a

Matlab-based model of multiple UAVs. However,

their model can only be run for up to eight elements. To

avoid these limitations, some approaches based on

cellular automatas have been presented Glickstein and

Stiles (1992), Shem, Mazzuchi and Sarkani (2008),

135
ISBN 978-88-903724-3-8

mailto:amoreno@bec.uned.es
mailto:ldltorre@bec.uned.es
mailto:jaranda@dia.uned.es
mailto:jlrisco@dacya.ucm.es
mailto:evabes@dacya.ucm.es

Holman, Kuzub and Wainer (2010). For example, in

the latter, the 3D cell space is divided into three 2D

layers, where the first layer stores UAV position and

previous travel path, the second one stores the target

location probability terrain, and the last level stores the

UAV restricted boundary information. Other

approaches consist of agent-based models, like Lundell

et al. (2006) and Karim, Heinze and Dunn (2004).

However, this paper is focused in the employment of

DEVS methodology for development of UAV

simulators using the Component Based Development

(CBD) process, which is a software development

paradigm to assemble applications from reusable,

executable software pieces called Components. Once

developed, a component is repeatedly used in many

projects via well-defined CBD interfaces, which greatly

reduces the software development cost and increases the

reliability (Kim et al. 2007).

 This paper is organized as follows. Section 2

collects some relevant aspects of DEVS. Section 3

describes the modeling of the upper mentioned scenario.

Section 4 presents the experiments and results of the

simulation. Finally, in section 6 some conclusions are

drawn.

2. DEVS

The Discrete Event System Specification is a general

formalism for discrete event system modeling based on

set theory (Zeigler et al. 2000). It allows representing

any system by three sets and five functions: input set

(X), output set (Y), state set (S), external transition

function (δext), internal transition function (δint),

confluent function (δcon), output function (λ), and time

advanced function (ta). DEVS provides a framework for

information modeling with several advantages to

analyze and design complex systems: completeness,

verifiability, extensibility, and maintainability. DEVS

can also approximate continuous systems using

numerical integration methods. Thus, simulation tools

based on DEVS are potentially more general than others

including continuous simulation tools (Kofman 2004).

 DEVS defines system behavior as well as system

structure. System behavior in DEVS is described using

input and output events as well as states. To this end,

DEVS has two kinds of models to represent systems:

atomic model and coupled model. The atomic model is

the irreducible model definition that specifies the

behavior for any modeled entity. The coupled model is

the aggregation/composition of two or more atomic and

coupled models connected by explicit couplings

between ports. The coupled model itself can be a

component in a larger coupled model system giving rise

to a hierarchical DEVS model construction. The top-

level coupled model is usually called the root coupled

model.

 DEVS models can be simulated with a simple ad-

hoc program written in any language. In fact, the

simulation of a DEVS model is not much more

complicated than the simulation of a Discrete Time

Model. The problem arises with models composed by

many subsystems where ad-hoc programming becomes

very hard. One of the simplest ways to implement these

complex models is writing a program with a

hierarchical structure equivalent to the hierarchical

structure of the model to be simulated. This is the

method used in (Zeigler et al. 2000), where a class

called Simulator is associated to each atomic DEVS

model and a different class called Coordinator is related

to each coupled DEVS model. At the top of the

hierarchy there is a Coordinator, usually called the Root

Coordinator that manages the global simulation time.

3. MODEL

To develop a more formal simulator, we redefine the

behavior of all the elements of the system following the

DEVS modeling formalism. Although different DEVS

tools can be used for this purpose, from the modeling

point of view, they are based on atomic and compound

model definitions presented in section 2.

 For this problem, each example is constructed upon

multiple DEVS atomic components that exemplify an

UAV dynamics and behavior, together with multiple

DEVS coupled components that characterize the line of

action of an ADU (see Figure 1). Each ADU is

composed by various heterogeneous DEVS atomic

components: detection radar; several tracking radars;

and certain number of missiles. Wiring rules are

depicted by Figure 2.

Below, we describe first the couplings type, and

afterwards the structure, behavior and couplings layout

of each model.

Figure 1 Root Coupled Model

136
ISBN 978-88-903724-3-8

Figure 2 Couplings pseudo code

3.1. Couplings

Couplings are directed edges that link output ports to

input ports, defined by a type that bounds the data

exchanged between models. The DEVS model

described in this document uses up to four different

coupling types.

 UAV state: UAV data type that encapsulates

the necessary information to know who, when,

where and how.

 Missile state: carries the missile information

as an UAV, current missile phase and target

identifier.

 Radar tracking state: covers the tracking

radar identifier, the ADU where it belongs, and

the data of the UAV to track.

 Lost target: the identifier of the UAV lost

during the tracking process.

Figure 3 Couplings types

3.2. UAV

Unmanned aerial vehicles are represented as models

assembled with two input ports that receive states of

tracking radars and missiles of each ADU

correspondingly. One output port that sends its state

gathering the computed time, identifier, position,

orientation and velocities. Additionally, keeps an

internal state variable with an array of these UAV states

reflecting changes in time of the UAV dynamics.

Whenever an UAV realizes that is been detected by an

ADU, starts if possible an evasion maneuver to escape

from the ADU fire power range and prevent from being

shot down.

 Basically, the UAV model works in following way.

Every time the internal time event function is triggered

(simulation time is equal to sigma), the next necessary

collection of states is computed, unless this collection is

not empty or the UAV has reached the end of the

trajectory. These states store intermediate values of

position, orientation and velocities that describe the

UAV’s movement across the current coordinate to the

next trajectory point. Then, sigma (time of next internal

time event) is updated to the next computed time or set

to ∞ only if the UAV reached the end of the assign path.

Whenever the external transition is executed (received

an input), the UAV verifies if any radar is tracking his

path and whether the distance from a missile aimed at

overthrowing it, is less than the established minimum. If

the former case is positive, attempts to escape through

an intersecting trajectory to flee away from the

corresponding ADU and afterwards updates sigma. If

the latter is positive and according to a certain

probability of destruction, the UAV is destroyed and

sigma is set to ∞. On every occasion that the output

function is activated the current UAV state is sent

thought the output port. Figures 4 and 5 depict this

behavior.

Figure 4 UAV State Diagram

Figure 5 UAV State Transitions

UavState {

 String id; //identifier

 Time t; //computed in time

 Double X,Y,Z; //X, Y and Z coordinates

 Double Vx,Vy,Vz; //X, Y and Z velocities

 Double theta,phi,psi; //roll,pitch,yaw

 Double Vtheta,Vphi,Vpsi;//roll,pitch,yaw vels

}

MissileState {

 UavState uav; // unmanned aerial vehicle

 String phase; // phase

 String target; // target identifier

}

RadarTrackingState {

 String id; //identifier

 String adu; //air defense unit

 UavState uav; //unmanned aerial vehicle

}

String lostTarget: // identifier of lost target

137
ISBN 978-88-903724-3-8

Figure 6 ADU DEVS model

3.3. ADU

Air defense units are coupled models formed by

one detection radar, multiple tracking radars and

multiple serial connected missiles. Figure 6 depicts the

DEVS based ADU model structure and Figure 7

illustrates the pseudo code that clarifies how the wiring

is set given the atomic models of all mentioned

elements. Detection radars scan the skies seeking for

UAVs. If a detection radar detects an UAV in its

proximity then looks for task-free tracking radars.

Assigns the spotted target UAV to an unoccupied

tracking radar. The tracking radar attempts to detect the

target UAV, if successful, alerts the first missile model

in the row with the corresponding target. If the missile

state is already fired, it hands the target to next missile

in the row. In essence, on every occasion an ADU

detects an UAV, after a specified period of time, shoots

a missile to attempt to knock down the UAV. In the

subsequent sections, each component is described in

more detail.

Figure 7 ADU couplings pseudo code

3.3.1. Detection Radar

The radar detection component consist of one input port

that receives UAV's states, another input port that alerts

if any tracking radar has lost its target, and one output

port per each tracking radar model to transmit the UAV

state to follow.

 The radar operation is based on its inputs, stores as

an internal state variable a collection that maps the

assignment between incoming UAVs to tracking radars.

When the detection radar receives one or more UAV's

states, first, attempts to discover them in its visibility

field, if they are within its range and according to a

certain probability of detection, checks if they have not

been already assign to any tracking radar, and then, in

that case, searches for a task free tracking radars to send

them, and sets sigma to a certain response time.

Otherwise, when it receives notification of a lost target

removes the mapping relationship from memory.

3.3.2. Tracking Radar

The tracking radar DEVS based model is design to

operate as follows. Through the input port linked to

detection radar of the corresponding ADU, obtains the

state of a UAV to track, stores its value as an internal

state variable and waits for the reception of the same

UAV state from the coupling wired to UAV’s models.

Then, verifies whether the UAV is within its detection

field, if it fails and the elapsed time doesn’t exceed the

defined maximum, estimates its position, orientation

and velocities and finally sends the UAV state to the

first model of the series of missiles. Otherwise, reports

to the Detection Radar that the target has been lost.

3.3.3. Missile

Missiles models are composed by one input port that

accepts states of UAVs intended to be blown down.

One output port to give over the UAV state to the next

missile only if their status is “fired”. And another output

port to communicate its state to the UAVs so they can

138
ISBN 978-88-903724-3-8

check whether they are destroyed or not. Like UAVs,

they also keep an internal state variable with an array of

missile states (same as UAVs) reflecting changes in

time of the missile dynamics.

 Essentially, as seen on Figures 8 and 9, missiles

wait for an external command from any tracking radar

model of its corresponding ADU to shift from the initial

state stop to be fired. Then, sigma is updated from

infinity to the next immediate state time. Afterwards,

every time the internal time event function is triggered,

jumps to the next computed state. Sigma is updated to

the next computed time, unless the array of states is

empty, reached its goal, or exceed limits or distance

sigma is set to ∞. This behavior is exemplified by

Figures 8 and 9.

Figure 8 Missile State Diagram

Figure 9 Missile State Transitions

4. SIMULATION

In order to evaluate the quality of the planner

before using it in real missions, we decide to validate

the routes in multiple experiments against a simulator

that contains models for all the elements of the problem.

The models of the radars and missiles are non-

deterministic, incorporating stochastic behaviors related

with the probability of detection and destruction of the

UAVs. So, two simulations for the same experiment

and optimal trajectories can return different results.

 The simulation symbolizes a scenario where one or

more unmanned aerial vehicles must follow a given

trajectory trying to avoid flying within ADUs visibility

range. Trajectories are calculated prior to the

simulation, each trajectory consists of a sequence of

way points, each way point may also be a getaway, i.e.,

an intersection between the current trajectory and an

alternative trajectory intended to be used in evasion

maneuvers. Whenever an UAV apprehends that is been

detected by an ADU, starts if possible an evasion

maneuver to escape from the ADU fire power range and

prevent from being shot down. Correspondingly, every

time an ADU detects an UAV, after a specified period

of time, shoots a missile to attempt to knock down the

UAV.

4.1. Experiments

The experiment consists of 3 UAVs and different

number of ADUs and NFZs. They also differ in the

initial and final positions of the UAVs, in the position

of the ADUs and NFZs, and in the number of initially

known ADUs. There are 4 different types (A, B, C, and

D) schematized in Figure 11. The initial and final

positions of each UAV are represented as green and

magenta crosses. The yellow crosses in experiment type

C represent intermediate points that the UAVs are

forced to visit. The ADUs are represented by the big

blue dashed circles which show the maximum distance

of detection of their radars, and by the small red solid

circles which enclose the zones where the probability of

destroying an UAV can be greater than 0. The NFZs are

represented with the rectangular green areas. For this

experiment, the offline path planner is configured to

consider no ADU’s and the initial routes are only by

NFZs, terrain and UAVs maneuverability.

Figure 11 represent the 4 experiment types (A, B, C and

D), the offline routes for the experiments, and one of the

online alternative routes.

4.2. Results

In this section we analyze the results of the

aforementioned experiments. For each of the 4 cases,

we carry out 30 simulations. Based on their results, we

measure the consistency of the simulations. The

consistency is characterized by the percentage of

successful arrivals of each UAV in each of the 4 cases

during the 30 simulations. The performance is measured

according with the total simulation time needed in each

of the 4 cases.

Table 1 Percentage of success for each example type

 UAV1 UAV2 UAV3

A 100% 100% 10%

B 100% 100% 30%

C 100% 77% 100%

D 13% 100% 17%

The results presented in Table I depend on the UAV,

experiment type (A, B, C, or D). For instance, if we

focus on the experiment B (second row of Table I),

UAV2 always survives because its initial trajectory is

always safe, UAV3 has a good chance to be destroyed

139
ISBN 978-88-903724-3-8

because its initial trajectory stays in the non-safe zone

too long. Similar explanations apply to the rest of the

UAVs in the remaining experiments.

Figure 10 Experiments A, B, C and D

5. CONCLUSIONS

The work presented in this document takes

advantage of DEVS simulation framework to build

models that simulate a complex military problem. The

simulator validates successfully the results of a route

planner for multiple UAVs. Builds accurate models to

verify the computed solutions of the path planner

obtained through several approximations.

ACKNOWLEDGMENTS

This work is supported by the Spanish grants DPI2009-

14552-C02-01 and DPI2009-14552-C02-02.

REFERENCES

Stevens, Brian L., and Lewis, Frank L., 2004. Aircraft

Control and Simulation. 2nd ed. Wiley.

Besada-Portas E., de la Torre L., Moreno A., and Risco-

Martín J.L., Performance Analysis of

Multiobjective Bio-inspired UAV Path Planners.

In GECCO 2011.

Rasmussen S. and Chandler P., 2002. Multiuav: a

multiple uav simulation for investigation of

cooperative control. Proceedings of the Winter,

vol. 1, pp. 869–877.

Glickstein I. and Stiles P., 1992. Situation assessment

using cellular automata paradigm. Aerospace and

Electronic Systems Magazine, IEEE, vol. 7, no. 1,

pp. 32–37.

Shem A., Mazzuchi T., and Sarkani S., 2008.

Addressing uncertainty in uav navigation decision-

making. Aerospace and Electronic Systems, IEEE

Transactions, vol. 44, no. 1, pp. 295 –313.

Holman K., Kuzub J., and Wainer G.A., 2010. Uav

search strategies using cell devs. Proceedings of

2010 Spring Simulation Conference, ANSS

Symposium, pp. 192–199.

Lundell M., Tang J., Hogan T., and Nygard K., 2006.

An agent-based heterogeneous uav simulator

design. Proceedings of the 5th WSEAS

International Conference on Artificial Intelligence,

Knowledge Engineering and Data Bases. WSEAS,

pp. 453–457.

Karim S., Heinze C., and Dunn S., 2004. Agent-based

mission management for a uav. Intelligent

Sensors, Sensor Networks and Information

Processing Conference, pp. 481 – 486.

Kim J.H, Kim T.G., and Jeong J., 2007. Embedding

devs methodology in cbd process for development

of war game simulators. Proceeding of summer

computer simulation conference, pp. 35:1–35:8.

Bernard P. Zeigler and T. Kim and H. Praehofer, 2000.

Theory of Modeling and Simulation: Integrating

Discrete Event and Continuous Complex Dynamic

Systems. Academic Press.

Kofman E., 2004. Discrete Event Simulation of Hybrid

Systems. SIAM Journal on Scientific Computing,

25(5), 1771-1797.

140
ISBN 978-88-903724-3-8

