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ABSTRACT 

Discrete Event Specification (DEVS) is a sound formal 

modeling and simulation framework based on concepts 

derived from dynamic systems theory. DEVS provides 

a framework for information modeling with several 

advantages to analyze and design complex systems: 

completeness, verifiability, extensibility, and 

maintainability. Unmanned Aerial Vehicles (UAVs) are 

aircrafts without onboard pilots that can be controlled 

remotely or fly autonomously based on pre-

programmed flight routes. They are used in a wide 

variety of fields, both civil and military. This research 

work is focused on taking advantage of DEVS 

simulation framework to build models that simulate a 

complex military problem. The simulator is used to 

validate the results of a route planner for multiple 

UAVs. The path planner uses several approximations to 

compute solutions in affordable time, whereas the 

simulator uses accurate models to validate those results.  
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1. INTRODUCTION AND RELATED WORK 

Unmanned Aerial Vehicles are aircrafts without 

onboard pilots that can be controlled remotely or fly 

autonomously based on pre-programmed flight routes 

(Stevens and Lewis 2004). They are used in a wide 

variety of fields, both civil and military, such as 

surveillance, reconnaissance, geophysical survey, 

environmental and meteorological monitoring, aerial 

photography, and search-and-rescue tasks. 

 In military missions they work in dangerous 

environments, where it is vital to fly along routes which 

keep the UAVs away from any type of threat and 

prohibited zone. The threats of our problem are ADUs, 

which consists on detection radar to discover the UAVs, 

a set of tracking radars to follow their trajectories and a 

set of missiles to destroy them. The prohibited zones, 

also known as Non Flying Zones (NFZs), are certain 

regions that the UAVs cannot visit due to mission 

restrictions. 

 The best routes for the UAVs are those which 

minimize the risk of destruction of each UAV and 

optimize some planning criteria (such as flying time and 

path length) while fulfilling all the physical constraints 

of the UAVs and its environment, plus the restrictions 

imposed by the selected mission (such as forcing the 

UAVs to visit some points of the map). 

Therefore, the motivation of this research is to 

validate the results of a route planner for multiple 

UAVs (Besada-Portas et al. 2011) applying DEVS 

formalism. The path planner uses several 

approximations to compute solutions in affordable time, 

whereas the simulator uses accurate models to validate 

those results. 

In order to evaluate the quality of the planner 

before using it in real missions, we decide to validate 

the routes in multiple experiments against a simulator 

that contains models for all the elements of the problem. 

In this problem, those elements are the lists of way 

points (WPs), the UAVs, the radars and the missiles; as 

well as the terrain, and the controllers coupled with the 

UAVs, this last group responsible for translating the 

WPs in maneuverability instructions. The models of the 

radars and missiles are non-deterministic, incorporating 

stochastic behaviors related with the probability of 

detection and destruction of the UAVs. So, two 

simulations for the same experiment and optimal 

trajectories can return different results. 

The simulation symbolizes a scenario where one or 

more unmanned aerial vehicles must follow a given 

trajectory trying to avoid flying within air defense unit’s 

visibility range. The trajectories are calculated prior to 

the simulation, each trajectory consists of a sequence of 

way points, each way point may also be a getaway. 

To properly simulate this set of elements, correct 

models have to be used as the basis of the simulation.  

Traditional flight simulators, such as Microsoft Flight 

Simulator, FlightGear and X-Plane have very accurate 

aerodynamics models incorporated in their programs, 

but they do not include other elements like Air Defense 

Units or UAV’s embedded radars.  

In addition, these programs need a lot of memory 

and computing time to accurately calculate UAV’s 

position and attitude.  In this regard, a number of multi-

UAV simulations have already been developed. In 

Rasmussen and Chandler (2002), the authors propose a 

Matlab-based model of multiple UAVs.   However, 

their model can only be run for up to eight elements. To 

avoid these limitations, some approaches based on 

cellular automatas have been presented Glickstein and 

Stiles (1992), Shem, Mazzuchi and Sarkani (2008), 
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Holman, Kuzub and Wainer (2010).  For example, in 

the latter, the 3D cell space is divided into three 2D 

layers, where the first layer stores UAV position and 

previous travel path, the second one stores the target 

location probability terrain, and the last level stores the 

UAV restricted boundary information. Other 

approaches consist of agent-based models, like Lundell 

et al. (2006) and Karim, Heinze and Dunn (2004). 

However, this paper is focused in the employment of 

DEVS methodology for development of UAV 

simulators using the Component Based Development 

(CBD) process, which is a software development 

paradigm to assemble applications from reusable, 

executable software pieces called Components. Once 

developed, a component is repeatedly used in many 

projects via well-defined CBD interfaces, which greatly 

reduces the software development cost and increases the 

reliability (Kim et al. 2007). 

 This paper is organized as follows. Section 2 

collects some relevant aspects of DEVS. Section 3 

describes the modeling of the upper mentioned scenario.  

Section 4 presents the experiments and results of the 

simulation. Finally, in section 6 some conclusions are 

drawn. 

 

2. DEVS 

The Discrete Event System Specification is a general 

formalism for discrete event system modeling based on 

set theory (Zeigler et al. 2000). It allows representing 

any system by three sets and five functions: input set 

(X), output set (Y), state set (S), external transition 

function (δext), internal transition function (δint), 

confluent function (δcon), output function (λ), and time 

advanced function (ta). DEVS provides a framework for 

information modeling with several advantages to 

analyze and design complex systems: completeness, 

verifiability, extensibility, and maintainability. DEVS 

can also approximate continuous systems using 

numerical integration methods. Thus, simulation tools 

based on DEVS are potentially more general than others 

including continuous simulation tools (Kofman 2004). 

 DEVS defines system behavior as well as system 

structure. System behavior in DEVS is described using 

input and output events as well as states. To this end, 

DEVS has two kinds of models to represent systems: 

atomic model and coupled model. The atomic model is 

the irreducible model definition that specifies the 

behavior for any modeled entity. The coupled model is 

the aggregation/composition of two or more atomic and 

coupled models connected by explicit couplings 

between ports. The coupled model itself can be a 

component in a larger coupled model system giving rise 

to a hierarchical DEVS model construction. The top-

level coupled model is usually called the root coupled 

model. 

 DEVS models can be simulated with a simple ad-

hoc program written in any language. In fact, the 

simulation of a DEVS model is not much more 

complicated than the simulation of a Discrete Time 

Model. The problem arises with models composed by 

many subsystems where ad-hoc programming becomes 

very hard. One of the simplest ways to implement these 

complex models is writing a program with a 

hierarchical structure equivalent to the hierarchical 

structure of the model to be simulated. This is the 

method used in (Zeigler et al. 2000), where a class 

called Simulator is associated to each atomic DEVS 

model and a different class called Coordinator is related 

to each coupled DEVS model. At the top of the 

hierarchy there is a Coordinator, usually called the Root 

Coordinator that manages the global simulation time. 

 

3. MODEL 

To develop a more formal simulator, we redefine the 

behavior of all the elements of the system following the 

DEVS modeling formalism. Although different DEVS 

tools can be used for this purpose, from the modeling 

point of view, they are based on atomic and compound 

model definitions presented in section 2. 

 For this problem, each example is constructed upon 

multiple DEVS atomic components that exemplify an 

UAV dynamics and behavior, together with multiple 

DEVS coupled components that characterize the line of 

action of an ADU (see Figure 1). Each ADU is 

composed by various heterogeneous DEVS atomic 

components: detection radar; several tracking radars; 

and certain number of missiles. Wiring rules are 

depicted by Figure 2. 

Below, we describe first the couplings type, and 

afterwards the structure, behavior and couplings layout 

of each model. 

 

 
Figure 1 Root Coupled Model 
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Figure 2 Couplings pseudo code 

 

3.1. Couplings 

Couplings are directed edges that link output ports to 

input ports, defined by a type that bounds the data 

exchanged between models. The DEVS model 

described in this document uses up to four different 

coupling types. 

 

 UAV state: UAV data type that encapsulates 

the necessary information to know who, when, 

where and how. 

 Missile state: carries the missile information 

as an UAV, current missile phase and target 

identifier. 

 Radar tracking state: covers the tracking 

radar identifier, the ADU where it belongs, and 

the data of the UAV to track. 

 Lost target: the identifier of the UAV lost 

during the tracking process. 

 

 
Figure 3 Couplings types 

 

3.2. UAV 

Unmanned aerial vehicles are represented as models 

assembled with two input ports that receive states of 

tracking radars and missiles of each ADU 

correspondingly. One output port that sends its state 

gathering the computed time, identifier, position, 

orientation and velocities. Additionally, keeps an 

internal state variable with an array of these UAV states 

reflecting changes in time of the UAV dynamics. 

Whenever an UAV realizes that is been detected by an 

ADU, starts if possible an evasion maneuver to escape 

from the ADU fire power range and prevent from being 

shot down. 

 Basically, the UAV model works in following way. 

Every time the internal time event function is triggered 

(simulation time is equal to sigma), the next necessary 

collection of states is computed, unless this collection is 

not empty or the UAV has reached the end of the 

trajectory. These states store intermediate values of 

position, orientation and velocities that describe the 

UAV’s movement across the current coordinate to the 

next trajectory point. Then, sigma (time of next internal 

time event) is updated to the next computed time or set 

to ∞ only if the UAV reached the end of the assign path. 

Whenever the external transition is executed (received 

an input), the UAV verifies if any radar is tracking his 

path and whether the distance from a missile aimed at 

overthrowing it, is less than the established minimum. If 

the former case is positive, attempts to escape through 

an intersecting trajectory to flee away from the 

corresponding ADU and afterwards updates sigma. If 

the latter is positive and according to a certain 

probability of destruction, the UAV is destroyed and 

sigma is set to ∞. On every occasion that the output 

function is activated the current UAV state is sent 

thought the output port. Figures 4 and 5 depict this 

behavior. 

 
Figure 4 UAV State Diagram 

 

 
Figure 5 UAV State Transitions 

UavState { 

 String id;            //identifier 

 Time t;               //computed in time 

 Double X,Y,Z;         //X, Y and Z coordinates 

 Double Vx,Vy,Vz;      //X, Y and Z velocities 

 Double theta,phi,psi;   //roll,pitch,yaw 

 Double Vtheta,Vphi,Vpsi;//roll,pitch,yaw vels 

} 

MissileState { 

 UavState uav;     // unmanned aerial vehicle 

 String phase;     // phase 

 String target;    // target identifier  

} 

RadarTrackingState { 

 String id;        //identifier 

 String adu;       //air defense unit 

 UavState uav;     //unmanned aerial vehicle   

} 

String lostTarget: // identifier of lost target 
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Figure 6 ADU DEVS model

 

3.3. ADU 

Air defense units are coupled models formed by 

one detection radar, multiple tracking radars and 

multiple serial connected missiles. Figure 6 depicts the 

DEVS based ADU model structure and Figure 7 

illustrates the pseudo code that clarifies how the wiring 

is set given the atomic models of all mentioned 

elements. Detection radars scan the skies seeking for 

UAVs. If a detection radar detects an UAV in its 

proximity then looks for task-free tracking radars. 

Assigns the spotted target UAV to an unoccupied 

tracking radar. The tracking radar attempts to detect the 

target UAV, if successful, alerts the first missile model 

in the row with the corresponding target. If the missile 

state is already fired, it hands the target to next missile 

in the row. In essence, on every occasion an ADU 

detects an UAV, after a specified period of time, shoots 

a missile to attempt to knock down the UAV. In the 

subsequent sections, each component is described in 

more detail.  

 

 
Figure 7 ADU couplings pseudo code 

3.3.1. Detection Radar 

The radar detection component consist of one input port 

that receives UAV's states, another input port that alerts 

if any tracking radar has lost its target, and one output 

port per each tracking radar model to transmit the UAV 

state to follow. 

 The radar operation is based on its inputs, stores as 

an internal state variable a collection that maps the 

assignment between incoming UAVs to tracking radars. 

When the detection radar receives one or more UAV's 

states, first, attempts to discover them in its visibility 

field, if they are within its range and according to a 

certain probability of detection, checks if they have not 

been already assign to any tracking radar, and then, in 

that case, searches for a task free tracking radars to send 

them, and sets sigma to a certain response time. 

Otherwise, when it receives notification of a lost target 

removes the mapping relationship from memory. 

 

3.3.2. Tracking Radar 

The tracking radar DEVS based model is design to 

operate as follows. Through the input port linked to 

detection radar of the corresponding ADU, obtains the 

state of a UAV to track, stores its value as an internal 

state variable and waits for the reception of the same 

UAV state from the coupling wired to UAV’s models. 

Then, verifies whether the UAV is within its detection 

field, if it fails and the elapsed time doesn’t exceed the 

defined maximum, estimates its position, orientation 

and velocities and finally sends the UAV state to the 

first model of the series of missiles. Otherwise, reports 

to the Detection Radar that the target has been lost. 

 

3.3.3. Missile 

Missiles models are composed by one input port that 

accepts states of UAVs intended to be blown down. 

One output port to give over the UAV state to the next 

missile only if their status is “fired”. And another output 

port to communicate its state to the UAVs so they can 
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check whether they are destroyed or not. Like UAVs, 

they also keep an internal state variable with an array of 

missile states (same as UAVs) reflecting changes in 

time of the missile dynamics.  

 Essentially, as seen on Figures 8 and 9, missiles 

wait for an external command from any tracking radar 

model of its corresponding ADU to shift from the initial 

state stop to be fired. Then, sigma is updated from 

infinity to the next immediate state time. Afterwards, 

every time the internal time event function is triggered, 

jumps to the next computed state. Sigma is updated to 

the next computed time, unless the array of states is 

empty, reached its goal, or exceed limits or distance 

sigma is set to ∞. This behavior is exemplified by 

Figures 8 and 9. 

 

Figure 8 Missile State Diagram 

Figure 9 Missile State Transitions 

4. SIMULATION 

In order to evaluate the quality of the planner 

before using it in real missions, we decide to validate 

the routes in multiple experiments against a simulator 

that contains models for all the elements of the problem. 

The models of the radars and missiles are non-

deterministic, incorporating stochastic behaviors related 

with the probability of detection and destruction of the 

UAVs. So, two simulations for the same experiment 

and optimal trajectories can return different results. 

 The simulation symbolizes a scenario where one or 

more unmanned aerial vehicles must follow a given 

trajectory trying to avoid flying within ADUs visibility 

range. Trajectories are calculated prior to the 

simulation, each trajectory consists of a sequence of 

way points, each way point may also be a getaway, i.e., 

an intersection between the current trajectory and an 

alternative trajectory intended to be used in evasion 

maneuvers. Whenever an UAV apprehends that is been 

detected by an ADU, starts if possible an evasion 

maneuver to escape from the ADU fire power range and 

prevent from being shot down. Correspondingly, every 

time an ADU detects an UAV, after a specified period 

of time, shoots a missile to attempt to knock down the 

UAV. 

 

4.1. Experiments 

The experiment consists of 3 UAVs and different 

number of ADUs and NFZs. They also differ in the 

initial and final positions of the UAVs, in the position 

of the ADUs and NFZs, and in the number of initially 

known ADUs. There are 4 different types (A, B, C, and 

D) schematized in Figure 11. The initial and final 

positions of each UAV are represented as green and 

magenta crosses. The yellow crosses in experiment type 

C represent intermediate points that the UAVs are 

forced to visit. The ADUs are represented by the big 

blue dashed circles which show the maximum distance 

of detection of their radars, and by the  small red solid 

circles which enclose the zones where the probability of 

destroying an UAV can be greater than 0. The NFZs are 

represented with the rectangular green areas. For this 

experiment, the offline path planner is configured to 

consider no ADU’s and the initial routes are only by 

NFZs, terrain and UAVs maneuverability. 

Figure 11 represent the 4 experiment types (A, B, C and 

D), the offline routes for the experiments, and one of the 

online alternative routes. 

4.2. Results 

In this section we analyze the results of the 

aforementioned experiments. For each of the 4 cases, 

we carry out 30 simulations. Based on their results, we 

measure the consistency of the simulations. The 

consistency is characterized by the percentage of 

successful arrivals of each UAV in each of the 4 cases 

during the 30 simulations. The performance is measured 

according with the total simulation time needed in each 

of the 4 cases. 

 

Table 1 Percentage of success for each example type 

 UAV1 UAV2 UAV3 

A 100% 100% 10% 

B 100% 100% 30% 

C 100% 77% 100% 

D 13% 100% 17% 

 

The results presented in Table I depend on the UAV, 

experiment type (A, B, C, or D). For instance, if we 

focus on the experiment B (second row of Table I), 

UAV2 always survives because its initial trajectory is 

always safe, UAV3 has a good chance to be destroyed 
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because its initial trajectory stays in the non-safe zone 

too long. Similar explanations apply to the rest of the 

UAVs in the remaining experiments. 

 

Figure 10 Experiments A, B, C and D 

5. CONCLUSIONS 

The work presented in this document takes 

advantage of DEVS simulation framework to build 

models that simulate a complex military problem. The 

simulator validates successfully the results of a route 

planner for multiple UAVs. Builds accurate models to 

verify the computed solutions of the path planner 

obtained through several approximations. 
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