THE CONTAINER STACKING PROBLEM: AN ARTIFICIAL INTELLIGENCE PLANNING-BASED APPROACH

Miguel A. Salido(a), Oscar Sapena(b), Federico Barber(c)

(a)(b)(c)Instituto de Automática e Informática Industrial, Universidad Politécnica de Valencia, Spain

(a)msalido@dsic.upv.es, (b)osapena@dsic.upv.es, (c)fbarber@dsic.upv.es

ABSTRACT
Large container ports around the world are major hubs in the global cargo transport system. A container stack is a type of temporary store where containers await further transport by truck, train or vessel. The main efficiency problem for an individual stack is to ensure easy access to containers at the expected time of transfer. In this paper, we propose a planning tool for finding the best configuration of containers in a bay. Thus, given a set of outgoing containers, our planning tool minimizes the number of relocations of containers in order to allocate all selected containers in an appropriate order to avoid further reshuffles. Furthermore, we compare the number of reshuffles in yard-bays with 4 tiers against yard-bays with 5 tiers. The obtained results recommend the use of stacks with 5 tiers in high loaded yard-bays, due to the fact that the number of reshuffles is reduced.

Keywords: container-stacking, artificial intelligence, planning
REFERENCES

AUTHORS BIOGRAPHY
Miguel A. Salido is an associate professor in Computer Science at the Technical University of Valencia, Spain. Most of his research is focused on techniques for constraint satisfaction techniques and railway scheduling problems. He is the recipient of some national and international awards. He is author of more than 70 papers published on international journals and conferences. He is member of several Scientific and Organizing Committees.

Oscar Sapena is an associate professor in Computer Science at the Technical University of Valencia, Spain. His research is focused on Planning form the Artificial Intelligence point of view. He is author of more than 20 papers published on international journals and conferences. He is member of several Scientific and Organizing Committees.

Federico Barber is Full Professor with the Department of Computer Science, where he leads a research team in artificial intelligence. He has worked on the development of temporal reasoning systems, Constraint Satisfaction Problems, planning and scheduling. He is the author of about 90 research articles which have been published in several journals and conferences. His research has produced several tools for solving real-world optimization combinatory problems. He has participated in and led several national and European research projects related to these areas. He is currently president of the Spanish Association for Artificial Intelligence, and member of several scientific associations.