EFFECTIVE ALLELE PRESERVATION BY OFFSPRING SELECTION:
AN EMPIRICAL STUDY FOR THE TSP

Michael Affenzeller(a), Stefan Wagner(b), Stephan Winkler(c)

(a),(b),(c) Upper Austrian University of Applied Sciences,
School of Informatics, Communications and Media
Heuristic and Evolutionary Algorithms Laboratory
Softwarepark 11, 4232 Hagenberg, Austria

(a)michael.affenzeller@heuristiclab.com, (b)stefan.wagner@heuristiclab.com, (c)stephan.winkler@heuristiclab.com

ABSTRACT
The basic selection ideas of the different representatives of evolutionary algorithms are sometimes quite diverse. The selection concept of genetic algorithms (GAs) and genetic programming (GP) is basically realized by the selection of above-average parents for reproduction whereas evolution strategies (ES) use the fitness of newly evolved offspring as the basis for selection (survival of the fittest due to birth surplus). This contribution considers aspects of population genetics and Evolution Strategies in order to propose an enhanced and generic selection model for Genetic Algorithms which is able to preserve the alleles which are part of a high quality solution. Some selected aspects of these enhanced techniques are discussed exemplarily on the basis of travelling salesman benchmark (TSP) benchmark problem instances.

Keywords: soficomputing, evolutionary computation, selection, self adaptation
REFERENCES

AUTHORS BIOGRAPHY

MICHAEL AFFENZELLER has published several papers and journal articles dealing with theoretical aspects of evolutionary computation and genetic algorithms. In 1997 he received his MSc in mathematics and in 2001 his PhD in computer science, both from JKU Linz, Austria. He is professor at the Upper Austria University of Applied Sciences (Campus Hagenberg) and associate professor at the Institute of Formal Models and Verification at JKU Linz since his habilitation in 2004.

STEPHAN M. WINKLER received his MSc in computer science in 2004 and his PhD in technical sciences in 2008, both from JKU Linz, Austria. His research interests include genetic programming, nonlinear model identification and machine learning. Currently he is research associate at the Research Center Hagenberg of the Upper Austrian University of Applied Sciences, working on the research program L284-N04 “GP-Based Techniques for the Design of Virtual Sensors”, a research project funded by the Austrian Science Fund (FWF).